
PDAL: Point cloud Data Abstraction
Library

Release 2.7.1

Andrew Bell
Brad Chambers
Howard Butler
Michael Gerlek

PDAL Contributors

Apr 23, 2024

CONTENTS

1 News 3
1.1 02-05-2024 . 3
1.2 08-18-2023 . 3
1.3 01-13-2023 . 3
1.4 06-28-2021 . 3
1.5 05-19-2021 . 4

2 About 5
2.1 About . 5

3 Download 13
3.1 Download . 13

4 Quickstart 19
4.1 Quickstart . 19

5 Applications 27
5.1 Applications . 27

6 Community 53
6.1 Community . 53

7 Drivers 55
7.1 Pipeline . 55
7.2 Stages . 64
7.3 Readers . 65
7.4 Writers . 139
7.5 Filters . 193

8 Dimensions 365
8.1 Dimensions . 365

9 Types 373
9.1 Types . 373

i

10 Python 375
10.1 Python . 375

11 Java 379
11.1 Java . 379

12 Tutorials 385
12.1 Tutorials . 385

13 Workshop 431
13.1 Point Cloud Processing and Analysis with PDAL 431

14 Development 529
14.1 Development . 529
14.2 Project . 588
14.3 API . 606
14.4 FAQ . 682
14.5 License . 684
14.6 References . 685

15 Indices and tables 687

Bibliography 689

Index 693

ii

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

PDAL is a C++ library for translating and manipulating point cloud data
(http://en.wikipedia.org/wiki/Point_cloud). It is very much like the GDAL
(http://www.gdal.org) library which handles raster and vector data. The About (page 5) page
provides high level overview of the library and its philosophy. Visit Readers (page 65) and
Writers (page 139) to list data formats it supports, and see Filters (page 193) for filtering
operations that you can apply with PDAL.

In addition to the library code, PDAL provides a suite of command-line applications that users
can conveniently use to process, filter, translate, and query point cloud data. Applications
(page 27) provides more information on that topic.

Finally, PDAL speaks Python by both embedding and extending it. Visit Python (page 375) to
find out how you can use PDAL with Python to process point cloud data.

The entire website is available as a single PDF at http://pdal.io/_/downloads/en/latest/pdf/

CONTENTS 1

http://en.wikipedia.org/wiki/Point_cloud
http://www.gdal.org
http://pdal.io/_/downloads/en/latest/pdf/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

2 CONTENTS

CHAPTER

ONE

NEWS

1.1 02-05-2024

PDAL 2.6.3 was released. Visit Download (page 13) to grab a copy.

1.2 08-18-2023

PDAL 2.5.6 was released. Visit Download (page 13) to grab a copy.

1.3 01-13-2023

PDAL 2.5.0 was released. Visit Download (page 13) to grab a copy. See it in action in Jupyter
by visiting Google Colab at https:
//colab.research.google.com/drive/1JQpcVFFJYMrJCfodqP4Nc_B0_w6p5WOV?usp=sharing

1.4 06-28-2021

Howard Butler of Hobu, Inc. (https://hobu.co) was recently interviewed by the MapScaping
Podcast (https://mapscaping.com). Listen to the episode where he talks about PDAL and point
cloud processing.

https://mapscaping.com/blogs/the-mapscaping-podcast/pdal-point-data-abstraction-library

3

https://colab.research.google.com/drive/1JQpcVFFJYMrJCfodqP4Nc_B0_w6p5WOV?usp=sharing
https://colab.research.google.com/drive/1JQpcVFFJYMrJCfodqP4Nc_B0_w6p5WOV?usp=sharing
https://hobu.co
https://mapscaping.com
https://mapscaping.com
https://mapscaping.com/blogs/the-mapscaping-podcast/pdal-point-data-abstraction-library

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1.5 05-19-2021

PDAL 2.2.1 has been released. You can download (page 13) the source code or follow the
quickstart (page 19) to get going in a hurry with Conda.

4 Chapter 1. News

CHAPTER

TWO

ABOUT

2.1 About

2.1.1 What is PDAL?

PDAL (https://pdal.io/) is Point Data Abstraction Library. It is a C/C++ open source library and
applications for translating and processing point cloud data
(https://en.wikipedia.org/wiki/Point_cloud). It is not limited to LiDAR
(https://en.wikipedia.org/wiki/Lidar) data, although the focus and impetus for many of the tools
in the library have their origins in LiDAR.

2.1.2 What is its big idea?

PDAL allows you to compose operations (page 193) on point clouds into pipelines (page 55) of
stages. These pipelines can be written in a declarative JSON syntax or constructed using the
available API.

Why would you want to do that?

A task might be to load some ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
(the most common LiDAR binary format) data into a database, but you wanted to transform it
into a common coordinate system along the way.

One option would be to write a specialized monolithic program that reads LAS data, reprojects
it as necessary, and then handles the necessary operations to insert the data in the appropriate
format in the database. This approach has a distinct disadvantage in that without careful
planning it could quickly spiral out of control as you add new little tweaks and features to the
operation. It ends up being very specific, and it does not allow you to easily reuse the
component that reads the LAS data separately from the component that transforms the data.

5

https://pdal.io/
https://en.wikipedia.org/wiki/Point_cloud
https://en.wikipedia.org/wiki/Lidar
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The PDAL approach is to chain together a set of components, each of which encapsulates
specific functionality. The components allow for reuse, composition, and separation of
concerns. PDAL views point cloud processing operations as a pipeline composed as a series of
stages. You might have a simple pipeline composed of a LAS Reader (page 89) stage, a
Reprojection (page 280) stage, and a PostgreSQL Writer (page 176), for example. Rather than
writing a single, monolithic specialized program to perform this operation, you can
dynamically compose it as a sequence of steps or operations.

Fig. 1: A simple PDAL pipeline composed of a reader, filter, and writer stages.

A PDAL JSON Pipeline (page 55) that composes this operation to reproject and load the data
into PostgreSQL might look something like the following:

1 {
2 "pipeline":[
3 {
4 "type":"readers.las",
5 "filename":"input.las"
6 },
7 {
8 "type":"filters.reprojection",
9 "out_srs":"EPSG:3857"

10 },
11 {
12 "type":"writers.pgpointcloud",
13 "connection":"host='localhost' dbname='lidar' user='hobu'",
14 "table":"output",
15 "srid":"3857"
16 }
17]
18 }

PDAL can compose intermediate stages for operations such as filtering, clipping, tiling,
transforming into a processing pipeline and reuse as necessary. It allows you to define these
pipelines as JSON (https://en.wikipedia.org/wiki/JSON), and it provides a command, pipeline
(page 41), to allow you to execute them.

Note: Raster processing tools often compose operations with this approach. PDAL
conceptually steals its pipeline modeling from GDAL (http://gdal.org/)’s Virtual Raster Format

6 Chapter 2. About

https://en.wikipedia.org/wiki/JSON
http://gdal.org/
http://www.gdal.org/gdal_vrttut.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(http://www.gdal.org/gdal_vrttut.html).

2.1.3 How is it different than other tools?

LAStools

One of the most common open source processing tool suites available for LiDAR processing is
LAStools (http://lastools.org) from Martin Isenburg (https://www.cs.unc.edu/~isenburg/).
PDAL is different in philosophy in a number of important ways:

1. All components of PDAL are released as open source software under an OSI
(https://opensource.org/licenses)-approved license.

2. PDAL allows application developers to provide proprietary extensions that act as stages
in processing pipelines. These might be things like custom format readers, specialized
exploitation algorithms, or entire processing pipelines.

3. PDAL can operate on point cloud data of any format – not just ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html). LAStools (http://lastools.org) can read and write formats other than
LAS, but relates all data to its internal handling of LAS data, limiting it to dimension
(page 365) types provided by the LAS format.

4. PDAL is coordinated by users with its declarative JSON (page 55) syntax. LAStools is
coordinated by linking lots of small, specialized command line utilities together with
intricate arguments.

5. PDAL is an open source project, with all of its development activities available online at
https://github.com/PDAL/PDAL

PCL

PCL (http://pointclouds.org) is a complementary, rather than substitute, open source software
processing suite for point cloud data. The developer community of the PCL library is focused
on algorithm development, robotic and computer vision, and real-time laser scanner
processing. PDAL can read and write PCL’s PCD format.

2.1. About 7

http://lastools.org
https://www.cs.unc.edu/~isenburg/
https://opensource.org/licenses
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://lastools.org
https://github.com/PDAL/PDAL
http://pointclouds.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Entwine

Entwine (https://entwine.io) is open source software from Hobu, Inc. that organizes massive
point cloud collections into streamable data services. These two software projects allow
province-scale LiDAR collections to be organized and served via HTTP clients over the
internet. PDAL provides readers.ept (page 72) to allow users to read data from those Entwine
Point Tile (https://entwine.io/entwine-point-tile.html) collections that Entwine produces..

Untwine

Untwine (https://github.com/hobuinc/untwine) is open source software from Hobu, Inc. that
organizes massive point just like Entwine, but it does so in a bottom-up rather than top-down
way.

viewer.copc.io

The Eptium viewer from Hobu, Inc. is a commercial lidar exploitation and visualization
platform based on Cesium that can be used to visualize COPC (https://copc.io) and Entwine
Point Tile (https://entwine.io/entwine-point-tile.html) content.

Potree

Potree (http://potree.org) is a WebGL (https://en.wikipedia.org/wiki/WebGL) HTML5 point
cloud renderer that speaks ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
and LASzip (http://laszip.org) compressed LAS. You can find the software at
https://github.com/potree/potree/

Note: See Potree in action using the USGS 3DEP AWS Public Dataset at
https://usgs.entwine.io

Others

Other open source point cloud softwares tend to be Desktop GUI, rather than library, focused.
They include some processing operations, and sometimes they even embed tools such as
PDAL. We’re obviously biased toward PDAL, but you might find useful bits of functionality in
them. These other tools include:

• libLAS (http://liblas.org)

• CloudCompare (http://www.danielgm.net/cc/)

8 Chapter 2. About

https://entwine.io
https://entwine.io/entwine-point-tile.html
https://entwine.io/entwine-point-tile.html
https://github.com/hobuinc/untwine
https://copc.io
https://entwine.io/entwine-point-tile.html
https://entwine.io/entwine-point-tile.html
http://potree.org
https://en.wikipedia.org/wiki/WebGL
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
https://github.com/potree/potree/
https://usgs.entwine.io
http://liblas.org
http://www.danielgm.net/cc/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Fusion (http://www.idaholidar.org/tools/fusion-ldv/)

• OrfeoToolbox (https://www.orfeo-toolbox.org/)

Note: The libLAS (http://liblas.org) project is an open source project that predates PDAL, and
provides some of the processing capabilities provided by PDAL. It is currently in maintenance
mode due to its dependence on LAS, the release of relevant LAStools capabilities as open
source, and the completion of Python LAS (https://pypi.python.org/pypi/laspy/1.4.1) software.

2.1.4 Where did PDAL come from?

PDAL takes its cue from another very popular open source project – GDAL (http://gdal.org/).
GDAL is Geospatial Data Abstraction Library, and it is used throughout the geospatial software
industry to provide translation and processing support for a variety of raster and vector formats.
PDAL provides the same capability for point cloud data types.

PDAL evolved out of the development of database storage and access capabilities for the U.S.
Army Corps of Engineers CRREL (http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-
Sheet-Article-View/Article/476649/remote-sensinggeographic-information-systems-center/)
GRiD (http://lidar.io/) project. Functionality that was creeping into libLAS (http://liblas.org/)
was pulled into a new library, and it was designed from the ground up to mimic successful
extract, transform, and load libraries in the geospatial software domain. PDAL has steadily
attracted more contributors as other software developers use it to provide point cloud data
translation and processing capability to their software.

How is point cloud data different than raster or vector geo data?

Point cloud data are indeed very much like the typical vector point data type of which many
geospatial practitioners are familiar, but their volume causes some significant challenges.
Besides their X, Y, and Z locations, each point often has full attribute information of other
things like Intensity, Time, Red, Green, and Blue.

Typical vector coverages of point data might max out at a million or so features. Point clouds
quickly get into the billions and even trillions, and because of this specialized processing and
management techniques must be used to handle so much data efficiently.

The algorithms used to extract and exploit point cloud data are also significantly different than
typical vector GIS work flows, and data organization is extremely important to be able to
efficiently leverage the available computing. These characteristics demand a library oriented
toward these approaches and PDAL achieves it.

Note: Possible point cloud dimension types provided and supported by PDAL can be found at

2.1. About 9

http://www.idaholidar.org/tools/fusion-ldv/
https://www.orfeo-toolbox.org/
http://liblas.org
https://pypi.python.org/pypi/laspy/1.4.1
http://gdal.org/
http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/476649/remote-sensinggeographic-information-systems-center/
http://lidar.io/
http://liblas.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dimensions (page 365).

2.1.5 What tasks are PDAL good at?

PDAL is great at point cloud data translation work flows. It allows users to apply algorithms to
data by providing an abstract API to the content – freeing users from worrying about many data
format issues. PDAL’s format-free worry does come with a bit of overhead cost. In most cases
this is not significant, but for specific processing work flows with specific data, specialized
tools will certainly outperform it.

In exchange for possible performance penalty or data model impedance, developers get the
freedom to access data over an abstract API, a multitude of algorithms to apply to data within
easy reach, and the most complete set of point cloud format drivers in the industry. PDAL also
provides a straightforward command line, and it extends simple generic Python processing
through Numpy. These features make it attractive to software developers, data managers, and
scientists.

2.1.6 What are PDAL’s weak points?

PDAL doesn’t provide a friendly GUI interface, it expects that you have the confidence to dig
into the options of Filters (page 193), Readers (page 65), and Writers (page 139). We
sometimes forget that you don’t always want to read source code to figure out how things work.
PDAL is an open source project in active development, and because of that, we’re always
working to improve it. Please visit Community (page 53) to find out how you can participate if
you are interested. The project is always looking for contribution, and the mailing list is the
place to ask for help if you are stuck.

2.1.7 High Level Overview

PDAL is first and foremost a software library. A successful software library must meet the
needs of software developers who use it to provide its software capabilities to their own
software. In addition to its use as a software library, PDAL provides some command line
applications (page 27) users can leverage to conveniently translate, filter, and process data with
PDAL. Finally, PDAL provides Python (http://python.org/) support in the form of embedded
operations and Python extensions.

10 Chapter 2. About

http://python.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Core C++ Software Library

PDAL provides a C++ API (page 606) software developers can use to provide point cloud
processing capabilities in their own software. PDAL is cross-platform C++, and it can compile
and run on Linux, OS X, and Windows. The best place to learn how to use PDAL’s C++ API is
the test suite (page 596) and its source code
(https://github.com/PDAL/PDAL/tree/master/test/unit).

See also:

PDAL software (page 385) development (page 552) tutorials (page 567) have more information
on how to use the library from a software developer’s perspective.

Command Line Utilities

PDAL provides a number of applications (page 27) that allow users to coordinate and construct
point cloud processing work flows. Some key tasks users can achieve with these applications
include:

• Print info (page 38) about a data set

• Data translation (page 50) from one point cloud format to another

• Application of exploitation algorithms

– Generate a DTM

– Remove noise

– Reproject from one coordinate system to another

– Classify points as ground/not ground (page 33)

• Merge (page 41) or split (page 46) data

• Catalog (page 48) collections of data

Note: The command line utilities are often simply pipeline (page 41) and Pipeline (page 55)
collected into a convenient application. In many cases you can replicate the functionality of an
application entirely within a single pipeline.

2.1. About 11

https://github.com/PDAL/PDAL/tree/master/test/unit

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Python API

PDAL supports both embedding Python (http://python.org/) and extending with Python
(http://python.org/). These allow you to dynamically interact with point cloud data in a more
comfortable and familiar language environment for geospatial practitioners.

See also:

The Python (page 375) document contains information on how to install and use the PDAL
Python extension.

Julia Plugin

PDAL supports embedding Julia (https://julialand.org) filters. These allow you to dynamically
interact with point cloud data in a more comfortable and familiar language environment for
geospatial practitioners, while still maintaining high performance.

Additionally the TypedTables.jl, RoamesGeometry.jl and AcceleratedArrays.jl libraries provide
some very high-level interfaces for writing efficient filters.

See also:

The github repo at https://github.com/cognitive-earth/PDAL-julia contains a docker image,
build instructions and some sample filters.

Documentation for the stage filters.julia (page 359)

2.1.8 Conclusion

PDAL is an open source project for translating, filtering, and processing point cloud data. It
provides a C++ API, command line utilities, and Python extensions. There are many open
source software projects for interacting with point cloud data, and PDAL’s niche is in
processing, translation, and automation.

12 Chapter 2. About

http://python.org/
http://python.org/
https://julialand.org
https://github.com/cognitive-earth/PDAL-julia

CHAPTER

THREE

DOWNLOAD

3.1 Download

Contents

• Download (page 13)

– Current Release(s) (page 13)

– Past Releases (page 14)

– Development Source (page 14)

– Binaries (page 15)

∗ Windows (page 15)

∗ RPMs (page 16)

∗ Alpine (page 16)

∗ Conda (page 16)

3.1.1 Current Release(s)

• 2024-03-27 PDAL-2.7.1-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.7.1/PDAL-2.7.1-src.tar.bz2)
Release Notes (https://github.com/PDAL/PDAL/releases/tag/2.7.1) (md5
(https://github.com/PDAL/PDAL/releases/download/2.7.1/PDAL-2.7.1-src.tar.bz2.md5))

13

https://github.com/PDAL/PDAL/releases/download/2.7.1/PDAL-2.7.1-src.tar.bz2
https://github.com/PDAL/PDAL/releases/tag/2.7.1
https://github.com/PDAL/PDAL/releases/download/2.7.1/PDAL-2.7.1-src.tar.bz2.md5

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3.1.2 Past Releases

• 2024-03-02 PDAL-2.7.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.7.0/PDAL-2.7.0-src.tar.bz2)

• 2024-02-05 PDAL-2.6.3-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.6.3/PDAL-2.6.3-src.tar.bz2)

• 2023-12-11 PDAL-2.6.2-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.6.2/PDAL-2.6.2-src.tar.bz2)

• 2023-11-24 PDAL-2.6.1-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.6.1/PDAL-2.6.1-src.tar.bz2)

• 2023-10-12 PDAL-2.6.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.6.0/PDAL-2.6.0-src.tar.bz2)

• 2023-08-18 PDAL-2.5.6-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.5.6/PDAL-2.5.6-src.tar.bz2)

• 2023-01-13 PDAL-2.5.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.5.0/PDAL-2.5.0-src.tar.bz2)

• 2022-03-18 PDAL-2.4.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.4.0/PDAL-2.4.0-src.tar.bz2)

• 2021-05-19 PDAL-2.3.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.3.0/PDAL-2.3.0-src.tar.bz2)

• 2020-08-20 PDAL-2.2.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.2.0/PDAL-2.2.0-src.tar.bz2)

• 2020-03-20 PDAL-2.1.0-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.bz2)

• 2019-08-23 PDAL-2.0.1-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/2.0.1/PDAL-2.0.1-src.tar.bz2)

• 2019-05-09 PDAL-1.9.1-src.tar.bz2
(https://github.com/PDAL/PDAL/releases/download/1.9.1/PDAL-1.9.1-src.tar.bz2)

3.1.3 Development Source

The main repository for PDAL is located on github at https://github.com/PDAL/PDAL.

You can obtain a copy of the active source code by issuing the following command

git clone https://github.com/PDAL/PDAL.git

14 Chapter 3. Download

https://github.com/PDAL/PDAL/releases/download/2.7.0/PDAL-2.7.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.6.3/PDAL-2.6.3-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.6.2/PDAL-2.6.2-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.6.1/PDAL-2.6.1-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.6.0/PDAL-2.6.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.5.6/PDAL-2.5.6-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.5.0/PDAL-2.5.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.4.0/PDAL-2.4.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.3.0/PDAL-2.3.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.2.0/PDAL-2.2.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/2.0.1/PDAL-2.0.1-src.tar.bz2
https://github.com/PDAL/PDAL/releases/download/1.9.1/PDAL-1.9.1-src.tar.bz2
https://github.com/PDAL/PDAL

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3.1.4 Binaries

In this section we list a number of the binary distributions of PDAL. The table below is
intended to provide an overview of some of the differences between the various distributions,
as not all features can be enabled in every distribution. This table only summarizes the
differences between distributions, and there are several plugins that are not built for any of the
distributions. These include Delaunay, MATLAB, MBIO, OpenSceneGraph, RDBLIB, and
RiVLib. To enable any of these plugins, the reader will need to install any required
dependencies and build PDAL from source.

Table 1: PDAL Distribution Feature Comparison

Docker RPMs Alpine Conda
(page 16)

Platform(s) linux linux linux win64, mac,
linux

PDAL version 2.5 2.4 2.5
CPD X
E57 X X
HDF X X
I3S X
Icebridge X X X
NITF X X
pgpointcloud X X X
SLPK X
TileDB X mac/linux

Windows

Windows builds are available via Conda Forge (https://anaconda.org/conda-forge/pdal) (64-bit
only). See the Conda (page 16) for more detailed information.

3.1. Download 15

https://anaconda.org/conda-forge/pdal

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

RPMs

RPMs for PDAL are available at https://copr.fedorainfracloud.org/coprs/neteler/pdal/.

Alpine

Alpine (page 16) is a linux distribution that is compact and frequently used with Docker
images. Alpine packages for PDAL are available at
https://pkgs.alpinelinux.org/packages?name=*pdal*&branch=edge.

Users have a choice of three separate packages.

1. pdal will install the PDAL binaries only, and is suitable for users who will be using the
PDAL command line applications.

2. pdal-dev will install development files which are required for users building their own
software that will link against PDAL.

3. py-pdal will install the PDAL Python extension.

Note that the PDAL package now resides in Alpine’s edge/community repository, which must
be added to your Alpine repositories list. Information on adding and updating repositories can
be found in the Alpine documentation.

To install one or more packages on Alpine, use the following command.

apk add [package...]

For example, the following command will install both the PDAL application and the Python
extension.

apk add py-pdal pdal

Conda

Conda (page 16) can be used on multiple platforms (Windows, macOS, and Linux) to install
software packages and manage environments. Conda packages for PDAL are available at
https://anaconda.org/conda-forge/pdal.

Conda installation instructions can be found on the Conda website. The instructions below
assuming you have a working Conda installation on your system.

Users have a choice of two separate packages.

1. pdal will install the PDAL binaries and development files.

2. python-pdal will install the PDAL Python extension.

To install one or more Conda packages, use the following command.

16 Chapter 3. Download

https://copr.fedorainfracloud.org/coprs/neteler/pdal/
https://pkgs.alpinelinux.org/packages?name=*pdal*&branch=edge
https://anaconda.org/conda-forge/pdal

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

conda install [-c channel] [package...]

Because the PDAL package (and it’s dependencies) live in the Conda Forge
(https://anaconda.org/conda-forge/pdal) channel, the command to install both the PDAL
application and the Python extension is

conda install -c conda-forge pdal python-pdal gdal

It is strongly recommended that you make use of Conda’s environment management system
and install PDAL in a separate environment (i.e., not the base environment). Instructions can
be found on the Conda website.

3.1. Download 17

https://anaconda.org/conda-forge/pdal

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

18 Chapter 3. Download

CHAPTER

FOUR

QUICKSTART

4.1 Quickstart

4.1.1 Introduction

The quickest way to start using PDAL is to leverage builds that were constructed by the PDAL
development team using Conda (https://conda.io/docs/).

Directly from the Conda front page,

Conda is an open source package management system and environment
management system that runs on Windows, macOS and Linux. Conda quickly
installs, runs and updates packages and their dependencies. Conda easily creates,
saves, loads and switches between environments on your local computer.

This exercise will print the first point of an ASPRS LAS (page 89) file. It will utilize the PDAL
command line application (page 27) to inspect the file.

Note: If you need to compile your own copy of PDAL, see Compilation (page 540) for more
details.

4.1.2 Install Conda

Conda installation instructions can be found at the following links. Read through them a bit for
your platform so you have an idea what to expect.

• Windows (https://conda.io/projects/conda/en/latest/user-guide/install/windows.html)

• macOS (https://conda.io/projects/conda/en/latest/user-guide/install/macos.html)

• Linux (https://conda.io/projects/conda/en/latest/user-guide/install/linux.html)

19

https://conda.io/docs/
https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: We will assume you are running on Windows, but the same commands should work in
macOS or Linux too – though definition of file paths might provide a significant difference.

Run Conda

On macOS and Linux, all Conda commands are typed into a terminal window. On Windows,
commands are typed into the Anaconda Prompt window. Instructions can be found in the
Conda Getting Started
(https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#starting-conda)
guide.

Test Installation

To test your installation, simply run the command conda list from your terminal window or
the Anaconda Prompt. A list of installed packages should appear.

Install the PDAL Package

A PDAL package based on the latest release, including all recent patches, is pushed to the
conda-forge (https://anaconda.org/conda-forge/pdal) channel on anaconda.org with every code
change on the PDAL maintenance branch.

Warning: It is a good idea to install PDAL in it’s own environment (or add it to an existing
one). You will NOT want to add it to your default environment named base. Managing
environments is beyond the scope of the quickstart, but you can read more about it here
(https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs).

To install the PDAL package so that we can use it to run PDAL commands, we run the
following command to create an environment named myenv, installing PDAL from the
conda-forge channel.

conda create --yes --name myenv --channel conda-forge pdal

Depending on what packages you may or may not have already installed, the output should
look something like:

Solving environment: done

Package Plan
(continues on next page)

20 Chapter 4. Quickstart

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#starting-conda
https://anaconda.org/conda-forge/pdal
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)

environment location: C:\Miniconda3\envs\myenv

added / updated specs:
- pdal

The following packages will be downloaded:

package	build
pdal-1.7.2 | py35h33f895e_1 8.6 MB conda-

→˓forge
setuptools-39.2.0 | py35_0 591 KB conda-

→˓forge
numpy-1.14.3 | py35h9fa60d3_2 42 KB
--

Total: 9.2 MB

The following NEW packages will be INSTALLED:

boost: 1.66.0-py35_vc14_1 conda-forge [vc14]
boost-cpp: 1.66.0-vc14_1 conda-forge [vc14]
ca-certificates: 2018.4.16-0 conda-forge
cairo: 1.14.10-vc14_0 conda-forge [vc14]
certifi: 2018.4.16-py35_0 conda-forge
curl: 7.60.0-vc14_0 conda-forge [vc14]
expat: 2.2.5-vc14_0 conda-forge [vc14]
flann: 1.9.1-h0953f56_2 conda-forge
freexl: 1.0.5-vc14_0 conda-forge [vc14]
geotiff: 1.4.2-vc14_1 conda-forge [vc14]
hdf4: 4.2.13-vc14_0 conda-forge [vc14]
hdf5: 1.10.1-vc14_2 conda-forge [vc14]
hexer: 1.4.0-vc14_1 conda-forge [vc14]
icc_rt: 2017.0.4-h97af966_0
icu: 58.2-vc14_0 conda-forge [vc14]
intel-openmp: 2018.0.3-0
jpeg: 9b-vc14_2 conda-forge [vc14]
kealib: 1.4.7-vc14_4 conda-forge [vc14]
krb5: 1.14.6-vc14_0 conda-forge [vc14]
laszip: 3.2.2-vc14_0 conda-forge [vc14]
laz-perf: 1.2.0-vc14_1 conda-forge [vc14]
libgdal: 2.2.4-vc14_4 conda-forge [vc14]

(continues on next page)

4.1. Quickstart 21

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
libiconv: 1.15-vc14_0 conda-forge [vc14]
libnetcdf: 4.6.1-vc14_2 conda-forge [vc14]
libpng: 1.6.34-vc14_0 conda-forge [vc14]
libpq: 9.6.3-vc14_0 conda-forge [vc14]
libspatialite: 4.3.0a-vc14_19 conda-forge [vc14]
libssh2: 1.8.0-vc14_2 conda-forge [vc14]
libtiff: 4.0.9-vc14_0 conda-forge [vc14]
libxml2: 2.9.8-vc14_0 conda-forge [vc14]
libxslt: 1.1.32-vc14_0 conda-forge [vc14]
mkl: 2018.0.3-1
mkl_fft: 1.0.2-py35_0 conda-forge
mkl_random: 1.0.1-py35_0 conda-forge
nitro: 2.7.dev2-vc14_0 conda-forge [vc14]
numpy: 1.14.3-py35h9fa60d3_2
numpy-base: 1.14.3-py35h5c71026_0
openjpeg: 2.3.0-vc14_2 conda-forge [vc14]
openssl: 1.0.2o-vc14_0 conda-forge [vc14]
pcl: 1.8.1-hd76163c_1 conda-forge
pdal: 1.7.2-py35h33f895e_1 conda-forge
pip: 9.0.3-py35_0 conda-forge
pixman: 0.34.0-vc14_2 conda-forge [vc14]
postgresql: 10.3-py35_vc14_0 conda-forge [vc14]
proj4: 4.9.3-vc14_5 conda-forge [vc14]
python: 3.5.5-1 conda-forge
setuptools: 39.2.0-py35_0 conda-forge
sqlite: 3.20.1-vc14_2 conda-forge [vc14]
tiledb: 1.4.1 conda-forge
vc: 14-0 conda-forge
vs2015_runtime: 14.0.25420-0 conda-forge
wheel: 0.31.0-py35_0 conda-forge
wincertstore: 0.2-py35_0 conda-forge
xerces-c: 3.2.0-vc14_0 conda-forge [vc14]
xz: 5.2.3-0 conda-forge
zlib: 1.2.11-vc14_0 conda-forge [vc14]

Downloading and Extracting Packages
pdal-1.7.2 | 8.6 MB | ######################################␣
→˓| 100%
setuptools-39.2.0 | 591 KB | ######################################␣
→˓| 100%
numpy-1.14.3 | 42 KB | ######################################␣
→˓| 100%
Preparing transaction: done

(continues on next page)

22 Chapter 4. Quickstart

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate myenv
#
To deactivate an active environment, use
#
$ conda deactivate

Note: PDAL’s Python extension is managed separately from the PDAL package. To install it,
replace pdal with python-pdal in any of the commands in this section. Seeing as how PDAL
is a dependency of the Python extension, you will actually get two for the price of one!

To install PDAL to an existing environment names myenv, we would run the following
command.

conda install --name myenv --channel conda-forge pdal

Finally, to update PDAL to the latest version, run the following.

conda update pdal

4.1.3 Fetch Sample Data

We need some sample data to play with, so we’re going to download the autzen.laz file.
Inside your terminal (assuming Windows), issue the following command:

explorer.exe https://github.com/PDAL/data/raw/master/autzen/autzen.laz

In the download dialog, save the file to your Downloads folder, e.g.,
C:\Users\hobu\Downloads.

4.1. Quickstart 23

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

4.1.4 Print the first point

To print the first point only, issue the following command (replacing of course hobu with your
user name, or another path altogether, depending on where you saved the file).

pdal info C:\Users\hobu\Downloads\autzen.laz -p 0

Here’s a summary of what’s going on with that command invocation

1. pdal: We’re going to run the pdal command.

2. info: We want to run info (page 38) on the data.

3. autzen.laz: The autzen.laz file that we want information from.

Warning 1: Cannot find datum.csv or gdal_datum.csv
Warning 1: Cannot find ellipsoid.csv
{

"filename": "C:\\Users\\hobu\\Downloads\\autzen.laz",
"pdal_version": "1.7.2 (git-version: Release)",
"points":
{

"point":
{

"Blue": 93,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 245379.3984,
"Green": 102,
"Intensity": 4,
"NumberOfReturns": 1,
"PointId": 0,
"PointSourceId": 7326,
"Red": 84,
"ReturnNumber": 1,
"ScanAngleRank": -17,
"ScanDirectionFlag": 0,
"UserData": 128,
"X": 637177.98,
"Y": 849393.95,
"Z": 411.19

}
}

}

24 Chapter 4. Quickstart

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

4.1.5 What’s next?

• Visit Applications (page 27) to find out how to utilize PDAL applications to process data
on the command line yourself.

• Visit Development (page 529) to learn how to embed and use PDAL in your own
applications.

• Readers (page 65) lists the formats that PDAL can read, Filters (page 193) lists the kinds
of operations you can do with PDAL, and Writers (page 139) lists the formats PDAL can
write.

• Tutorials (page 385) contains a number of walk-through tutorials for achieving many
tasks with PDAL.

• The PDAL workshop (page 431) contains numerous hands-on examples with screenshots
and example data of how to use PDAL Applications (page 27) to tackle point cloud data
processing tasks.

• Python (page 375) describes how PDAL embeds and extends Python and how you can
leverage these capabilities in your own programs.

See also:

Community (page 53) is a good source to reach out to when you’re stuck.

4.1. Quickstart 25

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

26 Chapter 4. Quickstart

CHAPTER

FIVE

APPLICATIONS

5.1 Applications

PDAL contains consists of a single application, called pdal. Operations are run by invoking
the pdal application along with a command name:

$ pdal info myfile.las
$ pdal translate input.las output.las
$ pdal pipeline --stdin < pipeline.json

Help for each command can be retrieved via the --help switch. The --drivers and
--options switches can tell you more about particular drivers and their options:

$ pdal info --help
$ pdal --drivers
$ pdal --options writers.las

All commands support the following options:

--developer-debug Enable developer debug (don't trap exceptions).
--label A string to use as a process label.
--driver Name of driver to use to override that inferred␣
→˓from file type.

Additional driver-specific options may be specified by using a namespace-prefixed option
name. For example, it is possible to set the LAS day of year at translation time with the
following option:

$ pdal translate \
--writers.las.creation_doy="42" \
input.las \
output.las

27

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: Driver-specific options can be identified using the pdal <command> --help
invocation.

5.1.1 chamfer

Warning: As of PDAL v2.6.0, the chamfer command is marked as DEPRECATED. It
will be removed from the default install in PDAL v2.7 and removed completely in PDAL
v2.8.

The following Python code can be used with the PDAL Python bindings to compute the
chamfer distance.
import pdal
import numpy as np

def chamfer_distance(arr1, arr2):
distance_1_to_2 = 0
distance_2_to_1 = 0

points1 = np.column_stack((arr1['X'], arr1['Y'], arr2['Z']))
points2 = np.column_stack((arr2['X'], arr2['Y'], arr2['Z']))

Compute distance from each point in arr1 to arr2
for p1 in points1:

distances = np.sqrt(np.sum((points2 - p1)**2, axis=1))
min_distance = np.min(distances)
distance_1_to_2 += min_distance

Compute distance from each point in arr2 to arr1
for p2 in points2:

distances = np.sqrt(np.sum((points1 - p2)**2, axis=1))
min_distance = np.min(distances)
distance_2_to_1 += min_distance

return (distance_1_to_2 + distance_2_to_1) / (len(arr1) +␣
→˓len(arr2))

pipeline1 = pdal.Reader("/path/to/input1.laz").pipeline()
pipeline1.execute()
arr1 = pipeline1.array[0]

pipeline2 = pdal.Reader("/path/to/input2.laz").pipeline()

28 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pipeline2.execute()
arr2 = pipeline2.array[0]

Compute Chamfer distance
result = chamfer_distance(arr1, arr2)
print("Chamfer Distance:", result)

Popular Python packages such as scipy and sklearn have functions to compute the pairwise
distance between points and can be used to simplify the above somewhat.

Note that the provided code does not match exactly the output of PDAL’s original
implementation, which summed the square of the distance to the nearest neighbor. We have
elected not to update the PDAL implementation at this time.

The chamfer command is used to compute the Chamfer distance between two point clouds.
The Chamfer distance is computed by summing the squared distances between nearest
neighbor correspondences of two point clouds.

More formally, for two non-empty subsets 𝑋 and 𝑌 , the Chamfer distance 𝑑𝐶𝐷(𝑋, 𝑌) is

𝑑𝐶𝐷(𝑋, 𝑌) =
∑︁
𝑥∈𝑋

min
𝑦∈𝑌

||𝑥− 𝑦||22 +
∑︁
𝑦∈𝑌

min
𝑥∈𝑋

||𝑥− 𝑦||22

$ pdal chamfer <source> <candidate>

--source arg Source filename
--candidate arg Candidate filename

The algorithm makes no distinction between source and candidate files (i.e., they can be
transposed with no affect on the computed distance).

The command returns 0 along with a JSON-formatted message summarizing the PDAL
version, source and candidate filenames, and the Chamfer distance. Identical point clouds will
return a Chamfer distance of 0.

$ pdal chamfer source.las candidate.las
{

"filenames":
[

"\/path\/to\/source.las",
"\/path\/to\/candidate.las"

],
"chamfer": 1.303648726,
"pdal_version": "1.3.0 (git-version: 191301)"

}

5.1. Applications 29

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: The Chamfer distance is computed for XYZ coordinates only and as such says nothing
about differences in other dimensions or metadata.

5.1.2 delta

Warning: As of PDAL v2.6.0, the delta command is marked as DEPRECATED. It will
be removed from the default install in PDAL v2.7 and removed completely in PDAL v2.8.

The delta command is used to select a nearest point from a candidate file for each point in the
source file.

$ pdal delta <source> <candidate>

--source source file name
--candidate candidate file name
--detail Output deltas per-point
--alldims Compute diffs for all dimensions (not just X,Y,Z)

Example 1:

$ pdal delta ../../test/data/las/1.2-with-color.las \
../../test/data/las/1.2-with-color.las

--
→˓--------
Delta summary for

source: '../../test/data/las/1.2-with-color.las'
candidate: '../../test/data/las/1.2-with-color.las'

--
→˓--------

----------- --------------- --------------- --------------
Dimension X Y Z
----------- --------------- --------------- --------------
Min 0.0000 0.0000 0.0000
Max 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0000
----------- --------------- --------------- --------------

30 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 2:

$ pdal delta test/data/1.2-with-color.las \
test/data/1.2-with-color.las --detail

"ID","DeltaX","DeltaY","DeltaZ"
0,0.00,0.00,0.00
1,0.00,0.00,0.00
2,0.00,0.00,0.00
3,0.00,0.00,0.00
4,0.00,0.00,0.00
5,0.00,0.00,0.00

5.1.3 density

Warning: As of PDAL v2.6.0, the density command is marked as DEPRECATED. It
will be removed from the default install in PDAL v2.7 and removed completely in PDAL
v2.8.

The density command produces a tessellated hexagonal OGR layer
(http://www.gdal.org/ogr_utilities.html) from the output of filters.hexbin (page 336).

$ pdal density <input> <output>

--input, -i Input point cloud file name
--output, -o Output vector data source
--lyr_name OGR layer name to write into datasource
--ogrdriver, -f OGR driver name to use
--sample_size Sample size for automatic edge length calculation.␣
→˓[5000]
--threshold Required cell density [15]
--hole_cull_tolerance_area

Tolerance area to apply to holes before cull
--smooth Smooth boundary output

5.1. Applications 31

http://www.gdal.org/ogr_utilities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5.1.4 eval

Warning: As of PDAL v2.6.0, the eval command is marked as DEPRECATED. It will be
removed from the default install in PDAL v2.7 and removed completely in PDAL v2.8.

The eval command is used to compare the Classification dimensions of two point clouds.

$ pdal eval <predicted> <truth> --labels <labels>

--predicted arg Positional argument specifying point cloud filename␣
→˓containing predicted labels.
--truth arg Positional argument specifying point cloud filename␣
→˓containing truth labels.
--labels arg Comma-separated list of classification labels to␣
→˓evaluate.

The command returns 0 along with a JSON-formatted classification report summarizing
various classification metrics.

In the provided example below, the truth and predicted point clouds contain points classified as
ground (class 2) and medium vegetation (class 4) in accordance with the LAS specification.
Both point clouds also contain some number of classifications that are either unlabeled or do
not fall into the specificied classes.

$ pdal eval predicted.las truth.las --labels 2,4
{

"confusion_matrix": "[[5240537,3860,24102],[268015,3179304,326677],
→˓[111453,115516,2950315]]",
"f1_score": 0.944,
"labels": [

{
"accuracy": 0.967,
"f1_score": 0.973,
"intersection_over_union": 0.947,
"label": "1",
"precision": 0.951,
"sensitivity": 0.995,
"specificity": 0.929,
"support": 5268499

},
{

"accuracy": 0.934,
"f1_score": 0.914,

(continues on next page)

32 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"intersection_over_union": 0.842,
"label": "2",
"precision": 0.999,
"sensitivity": 0.842,
"specificity": 0.999,
"support": 3773996

}
],
"mean_intersection_over_union": 0.894,
"overall_accuracy": 0.931,
"pdal_version": "2.2.0 (git-version: 6e80b9)",
"predicted_file": "predicted.las",
"truth_file": "truth.las"

}

Most of the returned metrics will be self explanatory, with scores reported both for individual
classes and at a summary level. The returned confusion matrix is presented in row-major order,
where each row corresponds to a truth label (the last row is a catch-all for any unlabeled or
ignored entries). Similarly, confusion matrix columns correspond to predicted labels where the
last column is once again a catch-all for unlabeled entries. Although unlabeled/ignored truth
labels are reported in the confusion matrix, they are excluded from all computed scores.

5.1.5 ground

Warning: As of PDAL v2.6.0, the ground command is marked as DEPRECATED. It will
be removed from the default install in PDAL v2.7 and removed completely in PDAL v2.8.

The basic pipeline detailed in the kernel is given below in JSON.
[

"input.laz",
{

"type": "filters.assign",
"value": "Classification=0"

},
{

"type": "filters.outlier"
},
{

"type": "filters.smrf",
"window": 18.0,
"threshold": 0.5,

5.1. Applications 33

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

"slope": 0.15,
"cell": 1.0,
"cut": 0.0,
"scalar": 1.25,
"returns": "last, only"

},
{

"type": "filters.expression",
"expression": "Classification==2"

},
"output.laz"

]

Written programmatically in Python, as shown below, resetting of Classification labels,
denoising, and extraction of ground returns only can all be conditionally included.
pipeline = pdal.Reader("input.laz").pipeline()
if reset:

pipeline |= pdal.Filter.assign(value="Classification=0")
if denoise:

pipeline |= pdal.Filter.outlier()
pipeline |= pdal.Filter.smrf(window=18.0,

threshold=0.5,
slope=0.15,
cell=1.0,
cut=0.0,
scalar=1.25,
returns="last, only")

if extract:
pipeline |= pdal.Filter.expression(expression="Classification==2

→˓")
pipeline |= pdal.Writer("output.laz")
pipeline.execute()

The ground command is used to segment the input point cloud into ground versus non-ground
returns using filters.smrf (page 198) and filters.outlier (page 206).

$ pdal ground [options] <input> <output>

--input, -i Input filename
--output, -o Output filename
--max_window_size Max window size
--slope Slope

(continues on next page)

34 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
--max_distance Max distance
--initial_distance Initial distance
--cell_size Cell size
--extract Extract ground returns?
--reset Reset classifications prior to segmenting?
--denoise Apply statistical outlier removal prior to␣
→˓segmenting?
--returns Include last returns?
--scalar Elevation scalar?
--threshold Elevation threshold?
--cut Cut net size?
--ignore A range query to ignore when processing

5.1.6 hausdorff

Warning: As of PDAL v2.6.0, the hausdorff command is marked as DEPRECATED. It
will be removed from the default install in PDAL v2.7 and removed completely in PDAL
v2.8.

The following Python code can be used with the PDAL Python bindings to compute the
Hausdorff distance.
import pdal
import numpy as np

def hausdorff_distance(arr1, arr2):
max_min_distance_1_to_2 = 0
max_min_distance_2_to_1 = 0

points1 = np.column_stack((arr1['X'], arr1['Y'], arr1['Z']))
points2 = np.column_stack((arr2['X'], arr2['Y'], arr2['Z']))

Compute distance from each point in arr1 to arr2
for p1 in points1:

distances = np.sqrt(np.sum((points2 - p1)**2, axis=1))
min_distance = np.min(distances)
max_min_distance_1_to_2 = max(max_min_distance_1_to_2, min_

→˓distance)

Compute distance from each point in arr2 to arr1
for p2 in points2:

distances = np.sqrt(np.sum((points1 - p2)**2, axis=1))

5.1. Applications 35

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

min_distance = np.min(distances)
max_min_distance_2_to_1 = max(max_min_distance_2_to_1, min_

→˓distance)

return max(max_min_distance_1_to_2, max_min_distance_2_to_1)

pipeline1 = pdal.Reader("/path/to/input1.laz").pipeline()
pipeline1.execute()
arr1 = pipeline1.arrays[0]

pipeline2 = pdal.Reader("/path/to/input2.laz").pipeline()
pipeline2.execute()
arr2 = pipeline2.arrays[0]

Compute Hausdorff distance
result = hausdorff_distance(arr1, arr2)
print("Hausdorff Distance:", result)

SciPy can be used to simplify this function even further, as shown below.
import pdal
import numpy as np
from scipy.spatial.distance import directed_hausdorff

def hausdorff_distance(arr1, arr2):
points1 = np.column_stack((arr1['X'], arr1['Y'], arr2['Z']))
points2 = np.column_stack((arr2['X'], arr2['Y'], arr2['Z']))

Compute directed Hausdorff distances
d1 = directed_hausdorff(points1, points2)[0]
d2 = directed_hausdorff(points2, points1)[0]

return max(d1, d2)

pipeline1 = pdal.Reader("/path/to/input1.laz").pipeline()
pipeline1.execute()
arr1 = pipeline1.array[0]

pipeline2 = pdal.Reader("/path/to/input2.laz").pipeline()
pipeline2.execute()
arr2 = pipeline2.array[0]

Compute Hausdorff distance
result = hausdorff_distance(arr1, arr2)

36 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

print("Hausdorff Distance:", result)

The hausdorff command is used to compute the Hausdorff distance between two point
clouds. In this context, the Hausdorff distance is the greatest of all Euclidean distances from a
point in one point cloud to the closest point in the other point cloud.

More formally, for two non-empty subsets 𝑋 and 𝑌 , the Hausdorff distance 𝑑𝐻(𝑋, 𝑌) is

𝑑𝐻(𝑋, 𝑌) = max
{︀
sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)
}︀

where sup and inf are the supremum and infimum respectively.

$ pdal hausdorff <source> <candidate>

--source arg Source filename
--candidate arg Candidate filename

The algorithm makes no distinction between source and candidate files (i.e., they can be
transposed with no affect on the computed distance).

The command returns 0 along with a JSON-formatted message summarizing the PDAL
version, source and candidate filenames, and the Hausdorff distance. Identical point clouds will
return a Hausdorff distance of 0.

$ pdal hausdorff source.las candidate.las
{

"filenames":
[

"\/path\/to\/source.las",
"\/path\/to\/candidate.las"

],
"hausdorff": 1.303648726,
"pdal_version": "1.3.0 (git-version: 191301)"

}

Note: The hausdorff is computed for XYZ coordinates only and as such says nothing about
differences in other dimensions or metadata.

5.1. Applications 37

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5.1.7 info

Displays information about a point cloud file, such as:

• basic properties (extents, number of points, point format)

• coordinate reference system

• additional metadata

• summary statistics about the points

• the plain text format should be reStructured text if possible to allow a user to retransform
the output into whatever they want with ease

$ pdal info <input>

--input, -i Input file name
--all Dump statistics, schema and metadata
--point, -p Point to dump --point="1-5,10,100-200" (0␣
→˓indexed)
--query Return points in order of distance from the

specified location (2D or 3D) --query Xcoord,Ycoord[,Zcoord][/count]
--stats Dump stats on all points (reads entire␣
→˓dataset)
--boundary Compute a hexagonal hull/boundary of dataset
--dimensions Dimensions on which to compute statistics
--enumerate Dimensions whose values should be enumerated
--schema Dump the schema
--pipeline-serialization Output filename for pipeline serialization
--summary Dump summary of the info
--metadata Dump file metadata info
--stdin, -s Read a pipeline file from standard input

If no options are provided, --stats is assumed.

Example 1:

$ pdal info test/data/las/1.2-with-color.las \
--query="636601.87, 849018.59, 425.10"

{
"0":
{

"Blue": 134,
"Classssification": 1,

(continues on next page)

38 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"EdgeOfFlightLine": 0,
"GpsTime": 245383.38808001476,
"Green": 104,
"Intensity": 124,
"NumberOfReturns": 1,
"PointSourceId": 7326,
"Red": 134,
"ReturnNumber": 1,
"ScanAngleRank": -4,
"ScanDirectionFlag": 1,
"UserData": 126,
"X": 636601.87,
"Y": 849018.59999999998,
"Z": 425.10000000000002

},
"1":
{

"Blue": 134,
"Classification": 2,
"EdgeOfFlightLine": 0,
"GpsTime": 246099.17323102333,
"Green": 106,
"Intensity": 153,
"NumberOfReturns": 1,
"PointSourceId": 7327,
"Red": 143,
"ReturnNumber": 1,
"ScanAngleRank": -10,
"ScanDirectionFlag": 1,
"UserData": 126,
"X": 636606.76000000001,
"Y": 849053.94000000006,
"Z": 425.88999999999999

},
...

5.1. Applications 39

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 2:

$ pdal info test/data/1.2-with-color.las -p 0-10
{

"filename": "../../test/data/las/1.2-with-color.las",
"pdal_version": "PDAL 1.0.0.b1 (116d7d) with GeoTIFF 1.4.1 GDAL 1.11.

→˓2 LASzip 2.2.0",
"points":
{

"point":
[

{
"Blue": 88,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 245380.78254962614,
"Green": 77,
"Intensity": 143,
"NumberOfReturns": 1,
"PointId": 0,
"PointSourceId": 7326,
"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,
"UserData": 132,
"X": 637012.23999999999,
"Y": 849028.31000000006,
"Z": 431.66000000000003

},
{

"Blue": 68,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 245381.45279923646,
"Green": 66,
"Intensity": 18,
"NumberOfReturns": 2,
"PointId": 1,
"PointSourceId": 7326,
"Red": 54,
"ReturnNumber": 1,
"ScanAngleRank": -11,

(continues on next page)

40 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"ScanDirectionFlag": 1,
"UserData": 128,
"X": 636896.32999999996,
"Y": 849087.70000000007,
"Z": 446.38999999999999

},
...

5.1.8 merge

The merge command will combine input files into a single output file.

$ pdal merge <input> ... <output>

--files, -f List of filenames. The last file listed is taken to be
the output file.

This command provides simple merging of files. It provides no facility for filtering,
reprojection, etc. The file type of the input files may be different from one another and different
from that of the output file.

5.1.9 pipeline

The pipeline command is used to execute Pipeline (page 55) JSON. By default the pipeline is
run in stream mode if possible, otherwise in standard mode. See Reading with PDAL
(page 385) or Pipeline (page 55) for more information.

$ pdal pipeline <input>

--input, -i Input filename
--dims Limit loaded dimensions to this list. Note␣
→˓that X, Y and Z are

always loaded.
--pipeline-serialization Output file for pipeline serialization
--validate Validate but do not process the pipeline.

Also reports whether a pipeline can be streamed.
--progress Name of file or FIFO to which stages should␣
→˓write

progress information. The file/FIFO must exist. PDAL will not␣
→˓create the

(continues on next page)

5.1. Applications 41

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
progress file.

--stdin, -s Read pipeline from standard input
--metadata Metadata filename
--stream Run in stream mode. If not possible, exit.
--nostream Run in standard mode.

Substitutions

The pipeline command can accept command-line option substitutions and they replace
existing options that are specified in the input JSON pipeline. For example, to set the output
and input LAS files for a pipeline that does a translation, the filename for the reader and the
writer can be overridden:

$ pdal pipeline translate.json --writers.las.filename=output.laz \
--readers.las.filename=input.las

If multiple stages of the same name exist in the pipeline, all stages would be overridden. In the
following example, both colorization filters would have their dimensions option overridden to
the value “Red:1:1.0, Blue, Green::256.0” by the command shown below:

{
"pipeline" : [

"input.las",
{

"type" : "filters.colorization",
"raster" : "raster1.tiff"
"dimensions": "Red"

},
{

"type" : "filters.colorization",
"raster" : "raster2.tiff"
"dimensions": "Blue"

},
"placeholder.laz"

]
}

$ pdal pipeline colorize.json --filters.colorization.dimensions= \
"Red:1:1.0, Blue, Green::256.0"

Option substitution can also refer to the tag of an individual stage. This can be done by using
the syntax –stage.<tagname>.<option>. This allows options to be set on individual stages, even
if there are multiple stages of the same type. For example, if a pipeline contained two LAS

42 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

readers with tags las1 and las2 respectively, the following command would allow assignment
of different filenames to each stage:

{
"pipeline" : [

{
"tag" : "las1",
"type" : "readers.las"

},
{

"tag" : "las2",
"type" : "readers.las"

},
"placeholder.laz"

]
}

$ pdal pipeline translate.json --writers.las.filename=output.laz \
--stage.las1.filename=file1.las --stage.las2.filename=file2.las

Options specified by tag names override options specified by stage types.

5.1.10 random

Warning: As of PDAL v2.6.0, the random command is marked as DEPRECATED. It will
be removed from the default install in PDAL v2.7 and removed completely in PDAL v2.8.

A simply Python script that creates uniformly distributed data and writes the output using
PDAL is given below.
import numpy as np
import pdal

def generate_points_uniform(num_points, x_min, x_max, y_min, y_max,␣
→˓z_min, z_max):

x_coords = np.random.uniform(x_min, x_max, num_points)
y_coords = np.random.uniform(y_min, y_max, num_points)
z_coords = np.random.uniform(z_min, z_max, num_points)

dtype = [('X', '<f8'), ('Y', '<f8'), ('Z', '<f8')]
points = np.zeros(num_points, dtype=dtype)

points['X'] = x_coords
points['Y'] = y_coords

5.1. Applications 43

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

points['Z'] = z_coords

return points

Configuration for uniform distribution
num_points_uniform = 100
x_min, x_max = 0, 10
y_min, y_max = 0, 10
z_min, z_max = 0, 10

Generate points using uniform distribution
points_uniform = generate_points_uniform(num_points_uniform, x_min,␣
→˓x_max, y_min, y_max, z_min, z_max)

pipeline = pdal.Writer("output_uniform.laz").pipeline(points_uniform)
pipeline.execute()

A similar Python script that creates normally distributed data and writes the output using
PDAL is given below.
import numpy
import pdal

def generate_points_normal(num_points, x_mean, x_std, y_mean, y_std,␣
→˓z_mean, z_std):

x_coords = np.random.normal(x_mean, x_std, num_points)
y_coords = np.random.normal(y_mean, y_std, num_points)
z_coords = np.random.normal(z_mean, z_std, num_points)

dtype = [('X', '<f8'), ('Y', '<f8'), ('Z', '<f8')]
points = np.zeros(num_points, dtype=dtype)

points['X'] = x_coords
points['Y'] = y_coords
points['Z'] = z_coords

return points

Configuration for normal distribution
num_points_normal = 100
x_mean, x_std = 5, 1
y_mean, y_std = 5, 1
z_mean, z_std = 5, 1

44 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Generate points using normal distribution
points_normal = generate_points_normal(num_points_normal, x_mean, x_
→˓std, y_mean, y_std, z_mean, z_std)

pipeline = pdal.Writer("output_normal.laz").pipeline(points_normal)
pipeline.execute()

The random command is used to create a random point cloud. It uses readers.faux (page 77) to
create a point cloud containing count points drawn randomly from either a uniform or normal
distribution. For the uniform distribution, the bounds can be specified (they default to a unit
cube). For the normal distribution, the mean and standard deviation can both be set for each of
the x, y, and z dimensions.

$ pdal random <output>

--output, -o Output file name
--compress, -z Compress output data (if supported by output format)
--count How many points should we write?
--bounds Extent (in XYZ to clip output to)
--mean A comma-separated or quoted, space-separated list of␣
→˓means

(normal mode): --mean 0.0,0.0,0.0 --mean "0.0 0.0 0.0"
--stdev A comma-separated or quoted, space-separated list of

standard deviations (normal mode): --stdev 0.0,0.0,0.0 --stdev "0.0␣
→˓0.0 0.0"
--distribution Distribution (uniform / normal)

5.1.11 sort

The sort command uses filters.mortonorder (page 265) to sort data by XY values.

$ pdal sort <input> <output>

--input, -i Input filename
--output, -o Output filename
--compress, -z Compress output data (if supported by output format)
--metadata, -m Forward metadata (VLRs, header entries, etc) from␣
→˓previous stages

5.1. Applications 45

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5.1.12 split

The split command will create multiple output files from a single input file. The command
takes an input file name and an output filename (used as a template) or output directory
specification.

$ pdal split <input> <output>

--input, -i Input filename
--output, -o Output filename
--length Edge length for splitter cells
--capacity Point capacity of chipper cells
--origin_x Origin in X axis for splitter cells
--origin_y Origin in Y axis for splitter cells

If neither the --length nor --capacity arguments are specified, an implcit argument of
capacity with a value of 100000 is added.

The output argument is a template. If the output argument is, for example, file.ext, the
output files created are file_#.ext where # is a number starting at one and incrementing for
each file created.

If the output argument ends in a path separator, it is assumed to be a directory and the input
argument is appended to create the output template. The split command never creates
directories. Directories must pre-exist.

Example 1:

$ pdal split --capacity 100000 infile.laz outfile.bpf

This command takes the points from the input file infile.laz and creates output files
outfile_1.bpf, outfile_2.bpf, . . . where each output file contains no more than 100000
points.

5.1.13 tile

The tile command will create multiple output files from input files by generating square tiles
of points. The command takes an input file name and an output filename template.

This command is similar to the split (page 46) command, but differs in several ways. The tile
command:

• Uses streaming mode to limit the amount of memory consumed by point data.

• Uses a placeholder for filename output.

46 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Provides for reprojection of data to create consistent output.

• Always creates square tiles that contain all points “covered” by each tile.

$ pdal tile <input> <output>

--input, -i Input filename
--output, -o Output filename
--length Edge length for cells [Default: 1000]
--origin_x Origin in X axis for cells [Default: None]
--origin_y Origin in Y axis for cells [Default: None]
--buffer Size of buffer (overlap) to include around each tile.

[Default: 0]
--out_srs Spatial reference system to which all input points

will be reprojected. [Default: None]

The input filename can contain a glob pattern
(https://en.wikipedia.org/wiki/Glob_%28programming%29) to allow multiple files as input.

The output filename must contain a placeholder character #. The placeholder character is
replaced with an X/Y index of the tile as a part of a cartesian system. For example, if the output
filename is specified as out#.las, the tile containing the origin will be named out0_0.las.
The tile to its right will be named out1_0.las. The tile above it will be named out0_1.las.
The command does not create directories – create any desired directories before running.

If an origin is not supplied with as argument, the first point read is used as the origin.

Example 1:

$ pdal tile infile.laz "outfile_#.bpf"

This command takes the points from the input file infile.laz and creates output files
outfile_0_0.bpf, outfile_0_1.bpf, . . . where each output file contains points in the
1000x1000 square units represented by the tile. The X/Y location of the first point is used as
the origin of the tile grid.

Example 2:

$ pdal tile "/home/me/files/*" "out_#.txt" --out_srs="EPSG:4326"

Reads all files in the directory /home/me/files as input and reprojects points to geographic
coordinates if necessary. The output is written to a set of text files in the current directory.

5.1. Applications 47

https://en.wikipedia.org/wiki/Glob_%28programming%29

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: Tile does not work with non-streamable formats, for example, writers.copc (page 144).

5.1.14 tindex

The tindex command is used to create a GDAL (http://www.gdal.org)-style tile index for
PDAL-readable point cloud types (see gdaltindex (http://www.gdal.org/gdaltindex.html)).

The tindex command has two modes. The first mode creates a spatial index file for a set of
point cloud files. The second mode creates a point cloud file that is the result of merging the
points from files referred to in a spatial index file that meet some criteria (usually a geographic
region filter).

tindex Creation Mode

$ pdal tindex create <tindex> <filespec>

--tindex OGR-readable/writeable tile index output
--filespec Build: Pattern of files to index. Merge: Output␣
→˓filename
--fast_boundary Use extent instead of exact boundary
--lyr_name OGR layer name to write into datasource
--tindex_name Tile index column name
--ogrdriver, -f OGR driver name to use
--t_srs Target SRS of tile index
--a_srs Assign SRS of tile with no SRS to this value
--write_absolute_path Write absolute rather than relative file paths
--stdin, -s Read filespec pattern from standard input

This command will index the files referred to by filespec and place the result in tindex.
The tindex is a vector file or database that will be created by pdal as necessary to store the
file index. The type of the index file can be specified by specifying the OGR code for the
format using the --ogrdriver option. If no driver is specified, the format defaults to “ESRI
Shapefile”. Any filetype that can be handled by OGR (http://www.gdal.org/ogr_formats.html)
is acceptable.

In vector file-speak, each file specified by filespec is stored as a feature in a layer in the index
file. The filespec is a glob pattern (http://man7.org/linux/man-pages/man7/glob.7.html). and
normally needs to be quoted to prevent shell expansion of wildcard characters.

48 Chapter 5. Applications

http://www.gdal.org
http://www.gdal.org/gdaltindex.html
http://www.gdal.org/ogr_formats.html
http://man7.org/linux/man-pages/man7/glob.7.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

tindex Merge Mode

$ pdal tindex merge <tindex> <filespec>

This command will read the existing index file tindex and merge the points in the indexed files
that pass any filter that might be specified, writing the output to the point cloud file specified in
filespec. The type of the output file is determined automatically from the filename extension.

--tindex OGR-readable/writeable tile index output
--filespec Build: Pattern of files to index. Merge: Output␣
→˓filename
--lyr_name OGR layer name to write into datasource
--tindex_name Tile index column name
--ogrdriver, -f OGR driver name to use
--bounds Extent (in XYZ) to clip output to
--polygon Well-known text of polygon to clip output
--t_srs Spatial reference of the clipping geometry.

Example 1:

Find all LAS files via find, send that file list via STDIN to pdal tindex, and write a SQLite
tile index file with a layer named pdal:

$ find las/ -iname "*.las" | pdal tindex create index.sqlite -f "SQLite
→˓" \

--stdin --lyr_name pdal

Example 2:

Glob a list of LAS files, output the SRS for the index entries to EPSG:4326, and write out an
SQLite (http://www.sqlite.org) file.

$ pdal tindex create index.sqlite "*.las" -f "SQLite" --lyr_name "pdal"␣
→˓\

--t_srs "EPSG:4326"

5.1. Applications 49

http://www.sqlite.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5.1.15 translate

The translate command can be used for simple conversion of files based on their file
extensions. It can also be used for constructing pipelines directly from the command-line. By
default, processing is done in stream mode if possible, standard mode if not.

$ pdal translate [options] input output [filter]

--input, -i Input filename
--output, -o Output filename
--filter, -f Filter type
--json PDAL pipeline from which to extract filters.
--pipeline, -p Pipeline output
--metadata, -m Dump metadata output to the specified file
--reader, -r Reader type
--writer, -w Writer type
--dims Limit loaded dimensions to this list. Note that X, Y␣
→˓and Z are always loaded.
--stream Run in stream mode. If not possible, exit.
--nostream Run in standard mode.

The --input and --output file names are required options.

If provided, the --pipeline option will write the pipeline constructed from the command-line
arguments to the specified file. The translate command will not actually run when this
argument is given.

The --json flag can use used to specify a PDAL pipeline from which filters will be extracted.
If a reader or writer exist in the pipeline, they will be removed and replaced with the input and
output provided on the command line. If a reader/writer stage references tags in the provided
pipeline, the overriding files will assume those tags. If the argument to the --json option
references an existing file, it is assumed that the file contains the pipeline to be processed. If the
argument value is not a filename, it is taken to be a literal JSON string that is the pipeline. The
flag can’t be used if filters are listed on the command line or explicitly with the --filter
option.

The --filter flag is optional. It is used to specify drivers used to filter the data. --filter
accepts multiple arguments if provided, thus constructing a multi-stage filtering operation.
Filters can’t be specified using this method and with the --json flag.

The --metadata flag accepts a filename for the output of metadata associated with the
execution of the translate operation.

If no --reader or --writer type are given, PDAL will attempt to infer the correct drivers
from the input and output file name extensions respectively.

50 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 1:

The translate command can be augmented by specifying fully specified options at the
command-line invocation. For example, the following invocation will translate
1.2-with-color.las to output.laz while doing the following:

• Setting the creation day of year to 42

• Setting the creation year to 2014

• Setting the LAS point format to 1

• Cropping the file with the given polygon

$ pdal translate \
--writers.las.creation_doy="42" \
--writers.las.creation_year="2014" \
--writers.las.format="1" \
--filters.crop.polygon="POLYGON ((636889.412951239268295 851528.

→˓512293258565478 422.7001953125,636899.14233423944097 851475.
→˓000686757150106 422.4697265625,636899.14233423944097 851475.
→˓000686757150106 422.4697265625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636976.977398241520859 851513.
→˓918218758190051 424.150390625,636976.977398241520859 851513.
→˓918218758190051 424.150390625,637069.406536744092591 851475.
→˓000686757150106 438.7099609375,637132.647526245797053 851445.
→˓812537756282836 425.9501953125,637132.647526245797053 851445.
→˓812537756282836 425.9501953125,637336.964569251285866 851411.
→˓759697255445644 425.8203125,637336.964569251285866 851411.
→˓759697255445644 425.8203125,637473.175931254867464 851158.
→˓795739248627797 435.6298828125,637589.928527257987298 850711.
→˓244121236610226 420.509765625,637244.535430748714134 850511.
→˓791769731207751 420.7998046875,636758.066280735656619 850667.
→˓461897735483944 434.609375,636539.155163229792379 851056.
→˓63721774588339 422.6396484375,636889.412951239268295 851528.
→˓512293258565478 422.7001953125))" \

./test/data/1.2-with-color.las \
output.laz \
filters.crop

5.1. Applications 51

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 2:

Given these tools, we can now construct a custom pipeline on-the-fly. The example below uses
a simple LAS reader and writer, but stages a voxel grid filter, followed by the SMRF filter and a
range filter. We can even set stage-specific parameters as shown.

$ pdal translate input.las output.las voxelcenternearestneighbor smrf␣
→˓range \

--filters.range.limits="Classification[2:2]"

Example 3:

This command reads the input text file “myfile” and writes an output LAS file “output.las”,
processing the data through the stats filter. The metadata output (including the output from the
stats filter) is written to the file “meta.json”.

$ pdal translate myfile output.las --metadata=meta.json -r readers.text␣
→˓\

--json="{ \"pipeline\": [{ \"type\":\"filters.stats\" }] }"

Example 4:

This command reprojects the points in the file “input.las” to another spatial reference system
and writes the result to the file “output.las”.

$ pdal translate input.las output.las -f filters.reprojection \
--filters.reprojection.out_srs="EPSG:4326"

52 Chapter 5. Applications

CHAPTER

SIX

COMMUNITY

6.1 Community

PDAL’s community interacts through Mailing List (page 53), GitHub (page 54), Gitter
(https://gitter.im/PDAL/PDAL) and IRC (page 54). Please feel welcome to ask questions and
participate in all of the venues. The Mailing List (page 53) communication channel is for
general questions, development discussion, and feedback. The GitHub (page 54)
communication channel is for development activities, bug reports, and testing. The IRC
(page 54) and Gitter (https://gitter.im/PDAL/PDAL) channels are for real-time chat activities
such as meetings and interactive debugging sessions.

6.1.1 Mailing List

Developers and users of PDAL participate on the PDAL mailing list. It is OK to ask questions
about how to use PDAL, how to integrate PDAL into your own software, and report issues that
you might have.

http://lists.osgeo.org/mailman/listinfo/pdal

Note: Please remember that an email to the PDAL list is going to 100s of individuals. Do your
diligence the best you can on your question before asking, but don’t be afraid to ask. We won’t
bite. Promise.

53

https://gitter.im/PDAL/PDAL
https://gitter.im/PDAL/PDAL
http://lists.osgeo.org/mailman/listinfo/pdal

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

6.1.2 GitHub

Visit http://github.com/PDAL/PDAL to file issues you might be having with the software.
GitHub is also where you can obtain a current development version of the software in the git
(https://en.wikipedia.org/wiki/Git_(software)) revision control system. The PDAL project is
eager to take contributions in all forms, and we welcome those who are willing to roll up their
sleeves and start filing tickets, pushing code, generating builds, and answering questions.

See also:

Development (page 529) provides more information on how the PDAL software development
activities operate.

6.1.3 Gitter

Some PDAL developers are active on Gitter (https://gitter.im/PDAL/PDAL) and you can use
that mechanism for asking questions and interacting with the developers in a mode that is
similar to IRC (page 54). Gitter uses your GitHub (page 54) credentials for access, so you will
need an account to get started.

6.1.4 Keybase

Some PDAL developers are available via Keybase’s pdal chat. See
https://keybase.io/blog/keybase-chat for more details.

6.1.5 IRC

You can find some PDAL developers on IRC on #pdal at Freenode (http://freenode.net). This
mechanism is usually reserved for active meetings and other outreach with the community. The
Mailing List (page 53) and GitHub (page 54) avenues are going to be more productive
communication channels in most situations.

54 Chapter 6. Community

http://github.com/PDAL/PDAL
https://en.wikipedia.org/wiki/Git_(software)
https://gitter.im/PDAL/PDAL
https://keybase.io/blog/keybase-chat
http://freenode.net

CHAPTER

SEVEN

DRIVERS

7.1 Pipeline

Pipelines define the processing of data within PDAL. They describe how point cloud data are
read, processed and written. PDAL internally constructs a pipeline to perform data translation
operations using translate (page 50), for example. While specific applications (page 27) are
useful in many contexts, a pipeline provides useful advantages for many workflows:

1. You have a record of the operation(s) applied to the data

2. You can construct a skeleton of an operation and substitute specific options (filenames,
for example)

3. You can construct complex operations using the JSON (http://www.json.org/)
manipulation facilities of whatever language you want.

Note: pipeline (page 41) is used to invoke pipeline operations via the command line.

7.1.1 Introduction

A PDAL processing pipeline is represented in JSON. The structure may either:

• a JSON object, with a key called pipeline whose value is an array of inferred or
explicit PDAL Stage Objects (page 59) representations.

• a JSON array, being the array described above without being encapsulated by a JSON
object.

55

http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Simple Example

A simple PDAL pipeline, inferring the appropriate drivers for the reader and writer from
filenames, and able to be specified as a set of sequential steps:

[
"input.las",
{

"type":"filters.crop",
"bounds":"([0,100],[0,100])"

},
"output.bpf"

]

Fig. 1: A simple pipeline to convert LAS (page 89) to BPF (page 66) while only keeping points
inside the box [0 ≤ 𝑥 ≤ 100, 0 ≤ 𝑦 ≤ 100].

Reprojection Example

A more complex PDAL pipeline reprojects the stage tagged A1, merges the result with B, and
writes the merged output to a GeoTIFF file with the writers.gdal (page 156) writer:

[
{

"filename":"A.las",
"spatialreference":"EPSG:26916"

},
{

"type":"filters.reprojection",
"in_srs":"EPSG:26916",
"out_srs":"EPSG:4326",
"tag":"A2"

},
{

"filename":"B.las",
"tag":"B"

},
{

(continues on next page)

56 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"type":"filters.merge",
"tag":"merged",
"inputs":[

"A2",
"B"

]
},
{

"type":"writers.gdal",
"filename":"output.tif"

}
]

Fig. 2: A more complex pipeline that merges two inputs together but uses fil-
ters.reprojection (page 280) to transform the coordinate system of file B.las
from UTM (http://spatialreference.org/ref/epsg/nad83-utm-zone-16n/) to Geographic
(http://spatialreference.org/ref/epsg/4326/).

Point Views and Multiple Outputs

Some filters produce sets of points as output. filters.splitter (page 327), for example, creates a
point set for each tile (rectangular area) in which input points exist. Each of these output sets is
called a point view. Point views are carried through a PDAL pipeline individually. Some
writers can produce separate output for each input point view. These writers use a placeholder
character (#) in the output filename which is replaced by an incrementing integer for each input
point view.

The following pipeline provides an example of writing multiple output files from a single
pipeline. The crop filter creates two output point views (one for each specified geometry) and
the writer creates output files ‘output1.las’ and ‘output2.las’ containing the two sets of points:

7.1. Pipeline 57

http://spatialreference.org/ref/epsg/nad83-utm-zone-16n/
http://spatialreference.org/ref/epsg/4326/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[
"input.las",
{

"type" : "filters.crop",
"bounds" : ["([0, 75], [0, 75])", "([50, 125], [50, 125])"]

},
"output#.las"

]

7.1.2 Processing Modes

PDAL process data in one of two ways: standard mode or stream mode. With standard mode,
all input is read into memory before it is processed. Many algorithms require standard mode
processing because they need access to all points. Operations that do sorting or require
neighbors of points, for example, require access to all points.

For operations that don’t require access to all points, PDAL provides stream mode. Stream
mode processes points through a pipeline in chunks, which reduces memory requirements.

When using pdal translate (page 50) or pdal pipeline (page 41) PDAL uses stream mode if
possible. If stream mode can’t be used the applications fall back to standard mode processing.
Streamable stages are tagged in the stage documentation with a blue bar. Users can explicitly
choose to use standard mode by using the --nostream option. Users of the PDAL API can
explicitly control the selection of the PDAL processing mode.

7.1.3 Pipelines

Pipeline Array

PDAL JSON pipelines are an array of stages.

Note: In versions of PDAL prior to 1.9, the array of stages needed to be the value of a key
named “pipeline” which was encapsulated in an object. The earlier format is still accepted for
backward compatibility.

Old format:

{
"pipeline" :
[

"inputfile",
"outputfile"

(continues on next page)

58 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
]

}

Equivalent new format:

[
"inputfile",
"outputfile"

]

• The pipeline array may have any number of string or Stage Objects (page 59) elements.

• String elements shall be interpreted as filenames. PDAL will attempt to infer the proper
driver from the file extension and position in the array. A writer stage will only be
created if the string is the final element in the array.

Stage Objects

For more on PDAL stages and their options, check the PDAL documentation on Readers
(page 65), Writers (page 139), and Filters (page 193).

• A stage object may have a member with the name tag whose value is a string. The
purpose of the tag is to cross-reference this stage within other stages. Each tag must be
unique.

• A stage object may have a member with the name inputs whose value is an array of
strings. Each element in the array is the tag of another stage to be set as input to the
current stage.

• Stages are processed sequentially in the order listed. An empty default input list is
created when interpretation of the pipeline begins.

• Reader stages will disregard the inputs member. When the current stage is a reader it is
added to the default input list.

• If inputs is specified for a writer or filter, those inputs are used for the current stage.
The default input list is replaced with the current stage.

• If inputs is not specified for a writer or filter, the default input list is used for the current
stage. The default input list is replaced with the current stage.

• A tag mentioned in another stage’s inputs must have been previously defined in the
pipeline array.

• A reader or writer stage object may have a member with the name type whose value is a
string. The type must specify a valid PDAL reader or writer name.

7.1. Pipeline 59

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• A filter stage object must have a member with the name type whose value is a string.
The type must specify a valid PDAL filter name.

• A stage object may have additional members with names corresponding to stage-specific
option names and their respective values. Values provided as JSON objects or arrays will
be stringified and parsed within the stage. Some options allow multiple inputs. In those
cases, provide the option values as a JSON array.

• A user_data option can be added to any stage object and it will be carried through to
any serialized pipeline output.

• All stages support the option_file option that allows options to be places in a separate
file. See Option Files (page 60) for details.

Filename Globbing

• A filename may contain the wildcard character * to match any string of characters. This
can be useful if working with multiple input files in a directory (e.g., merging all files).

Filename globbing ONLY works in pipeline file specifications. It doesn’t work when a
filename is provided as an option through a command-line application like pdal
pipeline or pdal translate.

Option Files

All stages accept the option file option that allows extra options for a stage to be placed in a
separate file. The value of the option is the filename in which the additional options are located.

Option files can be written using either JSON syntax or command line syntax. When using the
JSON syntax, the format is a block of options just as if the options were placed in a pipeline:

{
"minor_version": 4,
"out_srs": "EPSG_4326"

}

When using the command line syntax, the options are specified as they would be on the
command line without the need to qualify the option names with the stage name:

--minor_version=4 --out_srs="EPSG_4326"

60 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.1.4 Extended Examples

BPF to LAS

The following pipeline converts the input file from BPF (page 66) to LAS (page 162), inferring
both the reader and writer type, and setting a number of options on the writer stage.

[
"utm15.bpf",
{

"filename":"out2.las",
"scale_x":0.01,
"offset_x":311898.23,
"scale_y":0.01,
"offset_y":4703909.84,
"scale_z":0.01,
"offset_z":7.385474

}
]

Python HAG

In our next example, the reader and writer types are once again inferred. After reading the input
file, the ferry filter is used to copy the Z dimension into a new height above ground (HAG)
dimension. Next, the filters.python (page 353) is used with a Python script to compute height
above ground values by comparing the Z values to a surface model. These height above ground
values are then written back into the Z dimension for further analysis. See the Python code at
hag.py (https://raw.githubusercontent.com/PDAL/PDAL/master/test/data/autzen/hag.py.in).

See also:

filters.hag_nn (page 218) describes using a specific filter to do this job in more detail.

[
"autzen.las",
{

"type":"filters.ferry",
"dimensions":"Z=>HAG"

},
{

"type":"filters.python",
"script":"hag.py",
"function":"filter",
"module":"anything"

(continues on next page)

7.1. Pipeline 61

https://raw.githubusercontent.com/PDAL/PDAL/master/test/data/autzen/hag.py.in

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
"autzen-hag.las"

]

DTM

A common task is to create a digital terrain model (DTM) from the input point cloud. This
pipeline infers the reader type, applies an approximate ground segmentation filter using
filters.smrf (page 198), filters out all points but the ground returns (classification value of 2)
using the filters.range (page 318), and then creates the DTM using the writers.gdal (page 156).

[
"autzen-full.las",
{

"type":"filters.smrf",
"window":33,
"slope":1.0,
"threshold":0.15,
"cell":1.0

},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
{

"type":"writers.gdal",
"filename":"autzen-surface.tif",
"output_type":"min",
"gdaldriver":"GTiff",
"window_size":3,
"resolution":1.0

}
]

62 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Decimate & Colorize

This example still infers the reader and writer types while applying options on both. The
pipeline decimates the input LAS file by keeping every other point, and then colorizes the
points using the provided raster image. The output is written as ASCII text.

[
{

"filename":"1.2-with-color.las",
"spatialreference":"EPSG:2993"

},
{

"type":"filters.decimation",
"step":2,
"offset":1

},
{

"type":"filters.colorization",
"raster":"autzen.tif",
"dimensions": ["Red:1:1", "Green:2:1", "Blue:3:1"]

},
{

"filename":"junk.txt",
"delimiter":",",
"write_header":false

}
]

Reproject

Our first example with multiple readers, this pipeline infers the reader types, and assigns spatial
reference information to each. filters.reprojection (page 280) filter reprojects data to the
specified output spatial reference system.

[
{

"filename":"1.2-with-color.las",
"spatialreference":"EPSG:2027"

},
{

"filename":"1.2-with-color.las",
"spatialreference":"EPSG:2027"

},
(continues on next page)

7.1. Pipeline 63

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"filters.reprojection",
"out_srs":"EPSG:2028"

}
]

Globbed Inputs

Finally, we capture another merge pipeline demonstrating the ability to glob multiple input
LAS files from a given directory.

[
"/path/to/data/*.las",
"output.las"

]

See also:

The PDAL source tree contains a number of example pipelines that are used for testing. You
might find these inspiring. Go to
https://github.com/PDAL/PDAL/tree/master/test/data/pipeline to find more.

Note: Issuing the command pdal info --options will list all available stages and their
options. See info (page 38) for more.

7.2 Stages

The stages of a PDAL Pipeline (page 55) are divided into Readers (page 65), Filters (page 193)
and Writers (page 139). Stages may support streaming mode (page 58) or not, depending on
their functionality or particular implementation. Many stages are built into the base PDAL
library (the file pdalcpp.so on Unix, pdalcpp.dylib on OSX and pdalcpp.dll on Windows).
PDAL can also load stages that have been built separately. These stages are called plugins.

Stages are usually created as plugins for one of several reasons. First, a user may wish to create
a stage for their own purposes. In this case a user has no need to build their stage into the
PDAL library itself. Second, a stage may depend on some third-party library that cannot be
distributed with PDAL. Providing the stage as a plugin eliminates the direct dependency on a
library and can simplify licensing issues. Third, a stage may be little used and its addition
would unnecessarily increase the size of the PDAL library.

64 Chapter 7. Drivers

https://github.com/PDAL/PDAL/tree/master/test/data/pipeline

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

PDAL will automatically load plugins when necessary. PDAL plugins have a specific naming
pattern:

libpdal_plugin_<plugin type>_<plugin name>.<shared library extension>

Where <plugin type> is “reader”, “writer” or “filter” and <shared library extension> is “.dll”
on Windows, “.dylib” on OSX and “.so” on UNIX systems.

The <plugin name> must start with a letter or number, which can be followed by letters,
numbers, or an underscore (‘_’).

PDAL looks for plugins in the directory that contains the PDAL library itself, as well as the
directories ., ./lib, ../lib, ./bin, ../bin. Those paths are relative to the current working
directory. These locations can be overridden by setting the environment variable
PDAL_DRIVER_PATH to a list of directories delimited by ; on Windows and : on other
platforms.

You can use pdal --drivers to show stages that PDAL is able to load. Verify the above if
you are having trouble loading specific plugins.

7.3 Readers

Readers provide Dimensions (page 365) to Pipeline (page 55). PDAL attempts to normalize
common dimension types, like X, Y, Z, or Intensity, which are often found in LiDAR point
clouds. Not all dimension types need to be fixed, however. Database drivers typically return
unstructured lists of dimensions. A reader might provide a simple file type, like readers.text
(page 130), a complex database like readers.pgpointcloud (page 106), or a network service like
readers.ept (page 72).

7.3.1 readers.arrow

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

The Arrow reader supports reading Arrow and Parquet -formatted data as written by
writers.arrow (page 140), although it should support point clouds written by other writers too if

7.3. Readers 65

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

they follow either the GeoArrow (https://github.com/geoarrow/geoarrow/) or GeoParquet
(https://github.com/opengeospatial/geoparquet/) specification.

Caveats:

• Which schema is read is chosen by the file name extension, but can be overridden with
the format option set to geoarrow or geoparquet

•

Options

filename
Arrow GeoArrow or GeoParquet file to read [Required]

format
geoarrow or geoparquet option to override any filename extension hinting of data type
[Optional]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.2 readers.bpf

BPF is an NGA specification
(https://nsgreg.nga.mil/doc/view?i=4220&month=8&day=30&year=2016) for point cloud data.
The BPF reader supports reading from BPF files that are encoded as version 1, 2 or 3.

This BPF reader only supports Zlib compression. It does NOT support the deprecated
compression types QuickLZ and FastLZ. The reader will consume files containing ULEM
frame data and polarimetric data, although these data are not made accessible to PDAL; they
are essentially ignored.

Data that follows the standard header but precedes point data is taken to be metadata and is
UTF-encoded and added to the reader’s metadata.

Default Embedded Stage

This stage is enabled by default

66 Chapter 7. Drivers

https://github.com/geoarrow/geoarrow/
https://github.com/opengeospatial/geoparquet/
https://nsgreg.nga.mil/doc/view?i=4220&month=8&day=30&year=2016

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Streamable Stage

This stage supports streaming operations

Example

[
"inputfile.bpf",
{
"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
BPF file to read [Required]

fix_dims
BPF files may contain dimension names that aren’t allowed by PDAL. When this option
is ‘true’, invalid characters in dimension names are replaced by ‘_’ in order to make the
names valid. [Default: true]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3. Readers 67

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.3.3 readers.buffer

The readers.buffer (page 68) stage is a special stage that allows you to read data from your own
PointView rather than fetching the data from a specific reader. In the Writing with PDAL
(page 552) example, it is used to take a simple listing of points and turn them into an LAS file.

Default Embedded Stage

This stage is enabled by default

Example

See Writing with PDAL (page 552) for an example usage scenario for readers.buffer (page 68).

Options

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.4 readers.copc

The COPC Reader supports reading from COPC format (https://copc.io/) files. A COPC file
is a LASzip (http://laszip.org) (compressed LAS) file that organizes its data spatially, allowing
for incremental loading and spatial filtering.

Note: LAS stores X, Y and Z dimensions as scaled integers. Users converting an input LAS
file to an output LAS file will frequently want to use the same scale factors and offsets in the
output file as existed in the input file in order to maintain the precision of the data. Use the
forward option of writers.las (page 162) to facilitate transfer of header information from source
COPC files to destination LAS/LAZ files.

68 Chapter 7. Drivers

https://copc.io/
http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: COPC files can contain datatypes that are actually arrays rather than individual
dimensions. Since PDAL doesn’t support these datatypes, it must map them into datatypes it
supports. This is done by appending the array index to the name of the datatype. For example,
datatypes 11 - 20 are two dimensional array types and if a field had the name Foo for datatype
11, PDAL would create the dimensions Foo0 and Foo1 to hold the values associated with LAS
field Foo. Similarly, datatypes 21 - 30 are three dimensional arrays and a field of type 21 with
the name Bar would cause PDAL to create dimensions Bar0, Bar1 and Bar2. See the
information on the extra bytes VLR in the LAS Specification
(http://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf) for more information
on the extra bytes VLR and array datatypes.

Warning: COPC files that use the extra bytes VLR and datatype 0 will be accepted, but
the data associated with a dimension of datatype 0 will be ignored (no PDAL dimension
will be created).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.copc",
"filename":"inputfile.copc.laz"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

7.3. Readers 69

http://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
COPC file to read. Remote file specifications (http, AWS, Google, Azure, Dropbox) are
supported. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

bounds
The extent of the data to select in 2 or 3 dimensions, expressed as a string, e.g.: ([xmin,
xmax], [ymin, ymax], [zmin, zmax]). If omitted, the entire dataset will be
selected. The bounds specification can be followed by a slash (‘/’) and a spatial reference
specification to apply to the bounds specification.

polygon
A clipping polygon, expressed in a well-known text string, e.g.: POLYGON((0 0, 5000
10000, 10000 0, 0 0)). This option can be specified more than once. Multiple
polygons will will be treated as a single multipolygon. The polygon specification can be
followed by a slash (‘/’) and a spatial reference specification to apply to the polygon.

ogr
A JSON object representing an OGR query to fetch polygons to use for filtering. The
polygons fetched from the query are treated exactly like those specified in the polygon
option. The JSON object is specified as follows:

{
"drivers": "OGR drivers to use",
"openoptions": "Options to pass to the OGR open function␣

→˓[optional]",
"layer": "OGR layer from which to fetch polygons [optional]",
"sql": "SQL query to use to filter the polygons in the layer␣

→˓[optional]",
"options":
{

"geometry", "WKT or GeoJSON geomtry used to filter query␣
→˓[optional]"

}
}

70 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

requests
The number of worker threads processing data. The optimal number depends on your
system and your network connection, but more is not necessarily better. A reasonably
fast network connection can often fetch data faster than it can be processed, leading to
memory consumption and slower performance. [Default: 15]

resolution
Limit the pyramid levels of data to fetch based on the expected resolution of the data.
Units match that of the data. [Default: no resolution limit]

header
HTTP headers to forward for remote endpoints. Specify as a JSON object of key/value
string pairs.

query
HTTP query parameters to forward for remote endpoints. Specify as a JSON object of
key/value string pairs.

vlr
Read LAS VLRs and import as metadata. [Default: false]

keep_alive
The number of chunks to keep active in memory while reading [Default: 10]

fix_dims
Make invalid dimension names valid by converting disallowed characters to ‘_’. Only
applies to names specified in an extra-bytes VLR. [Default: true]

srs_vlr_order
Preference order to read SRS VLRs (list of ‘wkt1’, ‘wkt2’, or ‘projjson’). [Default:
‘wkt1, wkt2, projjson’]

nosrs
Don’t read the SRS VLRs. The data will not be assigned an SRS. This option is for use
only in special cases where processing the SRS could cause performance issues.
[Default: false]

7.3.5 readers.draco

Draco (https://github.com/google/draco) is a library for compressing and decompressing 3D
geometric meshes and point clouds and was designed and built for compression efficiency and
speed. The code supports compressing points, connectivity information, texture coordinates,
color information, normals, and any other generic attributes associated with geometry.

7.3. Readers 71

https://github.com/google/draco

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type": "readers.draco",
"filename": "color.las"

}
]

Options

filename
Input file name. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.6 readers.ept

Entwine Point Tile (https://entwine.io/entwine-point-tile.html) (EPT) is a hierarchical
octree-based point cloud format suitable for real-time rendering and lossless archival. Entwine
(https://entwine.io/) is a producer of this format. The EPT Reader supports reading data from
the EPT format, including spatially accelerated queries and file reconstruction queries.

Sample EPT datasets of hundreds of billions of points in size may be viewed with Potree
(http://potree.entwine.io/data/nyc.html).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

72 Chapter 7. Drivers

https://entwine.io/entwine-point-tile.html
https://entwine.io/
http://potree.entwine.io/data/nyc.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This example downloads a small area around the the Statue of Liberty from the New York City
data set (4.7 billion points) which can be viewed in its entirety in Potree
(http://potree.entwine.io/data/nyc.html).

[
{
"type": "readers.ept",
"filename": "http://na.entwine.io/nyc/ept.json",
"bounds": "([-8242669, -8242529], [4966549, 4966674])"

},
"statue-of-liberty.las"

]

Additional attributes created by the EPT addon writer (page 149) can be referenced with the
addon option. Here is an example that overrides the Classification dimension with an
addon dimension derived from the original dataset:

[
{

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json",
"addons": { "Classification": "~/entwine/addons/autzen/smrf" }

},
{

"type": "writers.las",
"filename": "autzen-ept-smrf.las"

}
]

For more details about addon dimensions and how to produce them, see writers.ept_addon
(page 149).

Options

filename
Path to the EPT resource from which to read, ending with ept.json. For example,
/Users/connor/entwine/autzen/ept.json or
http://na.entwine.io/autzen/ept.json. [Required]

spatialreference
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. [Default: none]

7.3. Readers 73

http://potree.entwine.io/data/nyc.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

bounds
The extents of the resource to select in 2 or 3 dimensions, expressed as a string, e.g.:
([xmin, xmax], [ymin, ymax], [zmin, zmax]). If omitted, the entire dataset
will be selected. The bounds can be followed by a slash (‘/’) and a spatial reference
specification to apply to the bounds.

resolution
A point resolution limit to select, expressed as a grid cell edge length. Units correspond
to resource coordinate system units. For example, for a coordinate system expressed in
meters, a resolution value of 0.1 will select points up to a ground resolution of 100
points per square meter.

The resulting resolution may not be exactly this value: the minimum possible resolution
that is at least as precise as the requested resolution will be selected. Therefore the result
may be a bit more precise than requested.

addons
A mapping of assignments of the form DimensionName: AddonPath, which assigns
dimensions from the specified paths to the named dimensions. These addon dimensions
are created by the EPT addon writer (page 149). If the dimension names already exist in
the EPT Schema (https://entwine.io/entwine-point-tile.html#schema) for the given
resource, then their values will be overwritten with those from the appropriate addon.

Addons may used to override well-known dimension (page 365). For example, an addon
assignment of "Classification": "~/addons/autzen/MyGroundDimension/"
will override an existing EPT Classification dimension with the custom dimension.

origin
EPT datasets are lossless aggregations of potentially multiple source files. The origin
option can be used to select all points from a single source file. This option may be
specified as a string or an integral ID.

The string form of this option selects a source file by its original file path. This may be a
substring instead of the entire path, but the string must uniquely select only one source
file (via substring search). For example, for an EPT dataset created from source files
one.las, two.las, and two.bpf, “one” is a sufficient selector, but “two” is not.

The integral form of this option selects a source file by its OriginId dimension, which
can be determined from the file’s position in EPT metadata file entwine-files.json.

Note: When using pdal info --summary, using the origin option will cause the resulting
bounds to be clipped to those of the selected origin, and the resulting number of points to be an
upper bound for this selection.

polygon
The clipping polygon, expressed in a well-known text string, e.g.: POLYGON((0 0,
5000 10000, 10000 0, 0 0)). This option can be specified more than once by

74 Chapter 7. Drivers

https://entwine.io/entwine-point-tile.html#schema

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

placing values in an array, in which case all of them will be unioned together, acting as a
single multipolygon. The polygon definition can be followed by a slash (‘/’) and a spatial
reference specification to apply to the polygon.

Note: When using pdal info --summary, using the polygon option will cause the
resulting bounds to be clipped to the maximal extents of all provided polygons, and the
resulting number of points to be an upper bound for this polygon selection.

Note: When both the bounds and polygon options are specified, only the points that fall
within both the bounds and the polygon(s) will be returned.

ogr
A JSON object representing an OGR query to fetch polygons to use for filtering. The
polygons fetched from the query are treated exactly like those specified in the polygon
option. The JSON object is specified as follows:

{
"drivers": "OGR drivers to use",
"openoptions": "Options to pass to the OGR open function␣

→˓[optional]",
"layer": "OGR layer from which to fetch polygons [optional]",
"sql": "SQL query to use to filter the polygons in the layer␣

→˓[optional]",
"options":
{

"geometry", "WKT or GeoJSON geomtry used to filter query␣
→˓[optional]"

}
}

requests
Maximum number of simultaneous requests for EPT data. [Minimum: 4] [Default: 15]

header
HTTP headers to forward for remote EPT endpoints, specified as a JSON object of
key/value string pairs.

query
HTTP query parameters to forward for remote EPT endpoints, specified as a JSON
object of key/value string pairs.

ignore_unreadable
If set to true, ignore errors for missing or unreadable point data nodes.

7.3. Readers 75

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.3.7 readers.e57

The E57 Reader supports reading from E57 files.

The reader supports E57 files with Cartesian point clouds.

Note: E57 files can contain multiple point clouds stored in a single file. If that is the case, the
reader will read all the points from all of the internal point clouds as one.

Only dimensions present in all of the point clouds will be read.

Note: Point clouds stored in spherical format are not supported.

Note: The E57 cartesianInvalidState dimension is mapped to the Omit PDAL dimension. A
range filter can be used to filter out the invalid points.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example 1

[
{

"type":"readers.e57",
"filename":"inputfile.e57"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

76 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 2

[
{

"type":"readers.e57",
"filename":"inputfile.e57"

},
{

"type":"filters.range",
"limits":"Omit[0:0]"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
E57 file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.8 readers.faux

The faux reader is used for testing pipelines. It does not read from a file or database, but
generates synthetic data to feed into the pipeline.

The faux reader requires a mode argument to define the method in which points should be
generated. Valid modes are as follows:

constant
The values provided as the minimums to the bounds argument are used for the X, Y and
Z value, respectively, for every point.

7.3. Readers 77

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

random
Random values are chosen within the provided bounds.

ramp
Value increase uniformly from the minimum values to the maximum values.

uniform
Random values of each dimension are uniformly distributed in the provided ranges.

normal
Random values of each dimension are normally distributed in the provided ranges.

grid
Creates points with integer-valued coordinates in the range provided (excluding the upper
bound).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.faux",
"bounds":"([0,1000000],[0,1000000],[0,100])",
"count":"10000",
"mode":"random"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

78 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

bounds
The spatial extent within which points should be generated. Specified as a string in the
form “([xmin,xmax],[ymin,ymax],[zmin,zmax])”. [Default: unit cube]

count
The number of points to generate. [Required, except when mode is ‘grid’]

override_srs
Spatial reference to apply to data. [Optional]

mean_x|y|z
Mean value in the x, y, or z dimension respectively. (Normal mode only) [Default: 0]

stdev_x|y|z
Standard deviation in the x, y, or z dimension respectively. (Normal mode only) [Default:
1]

mode
“constant”, “random”, “ramp”, “uniform”, “normal” or “grid” [Required]

7.3.9 readers.fbi

The FBI Reader supports reading from FastBinary format files. FastBinary is the internal
format for TerraScan. This driver allows to read FBI files in version 1 of the FBI specification.

Note: Support for all point attributes in LAS 1.2 format so data can be converted between
LAS 1.2 and Fast Binary formats without any loss of point attribute information.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.3. Readers 79

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.fbi",
"filename":"inputfile.fbi"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
FBI file to read [Required]

7.3.10 readers.gdal

The GDAL (http://gdal.org) reader reads GDAL readable raster
(http://www.gdal.org/formats_list.html) data sources as point clouds.

Each pixel is given an X and Y coordinate (and corresponding PDAL dimensions) that are
center pixel, and each band is represented by “band-1”, “band-2”, or “band-n”. Using the
‘header’ option allows naming the band data to standard PDAL dimensions.

Default Embedded Stage

This stage is enabled by default

Basic Example

Simply writing every pixel of a JPEG to a text file is not very useful.

[
{

"type":"readers.gdal",
"filename":"./pdal/test/data/autzen/autzen.jpg"

},
(continues on next page)

80 Chapter 7. Drivers

http://gdal.org
http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

LAS Example

The following example assigns the bands from a JPG to the RGB values of an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
file using writers.las (page 162).

[
{

"type":"readers.gdal",
"filename":"./pdal/test/data/autzen/autzen.jpg",
"header": "Red, Green, Blue"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Note: readers.gdal (page 80) is quite sensitive to GDAL’s cache settings. See the
GDAL_CACHEMAX value at https://gdal.org/user/configoptions.html for more information.

Options

filename
GDALOpen
(https://gdal.org/api/raster_c_api.html#gdal_8h_1aca05455472359964151f9c891d678d5e)
‘able raster file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

7.3. Readers 81

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
https://gdal.org/user/configoptions.html
https://gdal.org/api/raster_c_api.html#gdal_8h_1aca05455472359964151f9c891d678d5e

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

header
A comma-separated list of dimension (page 365) IDs to map bands to. The length of the
list must match the number of bands in the raster.

memorycopy
Use the GDAL MEM driver (https://gdal.org/drivers/raster/mem.html) to copy the entire
raster into memory before converting to points. This is useful if the raster driver has a lot
of per-block overhead or you are willing to trade memory for performance.

gdalopts
A list of key/value options to pass directly to the GDAL driver. The format is
name=value,name=value,. . . The option may be specified any number of times.

7.3.11 readers.hdf

The HDF reader reads data from files in the HDF5 format.
(https://www.hdfgroup.org/solutions/hdf5/) You must explicitly specify a mapping of HDF
datasets to PDAL dimensions using the dimensions parameter. ALL dimensions must be
scalars and be of the same length. Compound types are not supported at this time.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

This example reads from the Autzen HDF example with all dimension properly mapped and
then outputs a LAS file.

[
{

"type": "readers.hdf",
"filename": "test/data/hdf/autzen.h5",
"dimensions":

(continues on next page)

82 Chapter 7. Drivers

https://gdal.org/drivers/raster/mem.html
https://www.hdfgroup.org/solutions/hdf5/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"X" : "autzen/X",
"Y" : "autzen/Y",
"Z" : "autzen/Z",
"Red" : "autzen/Red",
"Blue" : "autzen/Blue",
"Green" : "autzen/Green",
"Classification" : "autzen/Classification",
"EdgeOfFlightLine" : "autzen/EdgeOfFlightLine",
"GpsTime" : "autzen/GpsTime",
"Intensity" : "autzen/Intensity",
"NumberOfReturns" : "autzen/NumberOfReturns",
"PointSourceId" : "autzen/PointSourceId",
"ReturnNumber" : "autzen/ReturnNumber",
"ScanAngleRank" : "autzen/ScanAngleRank",
"ScanDirectionFlag" : "autzen/ScanDirectionFlag",
"UserData" : "autzen/UserData"

}
},
{

"type" : "writers.las",
"filename": "output.las",
"scale_x": 1.0e-5,
"scale_y": 1.0e-5,
"scale_z": 1.0e-5,
"offset_x": "auto",
"offset_y": "auto",
"offset_z": "auto"

}
]

Note: All dimensions must be simple numeric HDF datasets with equal lengths. Compound
types, enum types, string types, etc. are not supported.

Warning: The HDF reader does not set an SRS.

7.3. Readers 83

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Common Use Cases

A possible use case for this driver is reading NASA’s ICESat-2 (https://icesat-2.gsfc.nasa.gov/)
data. This example reads the X, Y, and Z coordinates from the ICESat-2 ATL03
(https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r002.pdf)
format and converts them into a LAS file.

Note: ICESat-2 data use EPSG:7912 (https://epsg.io/7912). ICESat-2 Data products
documentation can be found here (https://icesat-2.gsfc.nasa.gov/science/data-products)

[
{

"type": "readers.hdf",
"filename": "ATL03_20190906201911_10800413_002_01.h5",
"dimensions":
{

"X" : "gt1l/heights/lon_ph",
"Y" : "gt1l/heights/lat_ph",
"Z" : "gt1l/heights/h_ph"

}
},
{

"type" : "writers.las",
"filename": "output.las"

}
]

Options

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

dimensions
A JSON map with PDAL dimension names as the keys and HDF dataset paths as the
values.

84 Chapter 7. Drivers

https://icesat-2.gsfc.nasa.gov/
https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r002.pdf
https://epsg.io/7912
https://icesat-2.gsfc.nasa.gov/science/data-products

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.3.12 readers.i3s

Indexed 3d Scene Layer (I3S) (https://github.com/Esri/i3s-
spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md)
is a specification created by Esri as a format for their 3D Scene Layer and scene services. The
I3S reader handles RESTful webservices in an I3S file structure/format.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example will download the Autzen dataset from the ArcGIS scene server and output it to a
las file. This is done through PDAL’s command line interface or through the pipeline.

[
{

"type": "readers.i3s",
"filename": "https://tiles.arcgis.com/tiles/8cv2FuXuWSfF0nbL/

→˓arcgis/rest/services/AUTZEN_LiDAR/SceneServer",
"obb": {

"center": [
636590,
849216,
460

],
"halfSize": [

590,
281,
60

],
"quaternion":
[

0,
0,
0,

(continues on next page)

7.3. Readers 85

https://github.com/Esri/i3s-spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
1

]
}

}
]

pdal translate i3s://https://tiles.arcgis.com/tiles/8cv2FuXuWSfF0nbL/
→˓arcgis/rest/services/AUTZEN_LiDAR/SceneServer \

autzen.las \
--readers.i3s.threads=64

Options

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

filename
I3S file stored remotely. These must be prefaced with an “i3s://”.

Example remote file: pdal translate i3s://https://tiles.arcgis.com/
tiles/arcgis/rest/services/AUTZEN_LiDAR/SceneServer autzen.las

threads
This specifies the number of threads that you would like to use while reading. The
default number of threads to be used is 8. This affects the speed at which files are fetched
and added to the PDAL view.

Example: --readers.i3s.threads=64

obb
An oriented bounding box used to filter the data being retrieved. The obb is specified as
JSON exactly as described by the I3S specification
(https://github.com/Esri/i3s-spec/blob/master/docs/2.0/obb.cmn.md).

dimensions
Comma-separated list of dimensions that should be read. Specify the Esri name, rather
than the PDAL dimension name.

86 Chapter 7. Drivers

https://github.com/Esri/i3s-spec/blob/master/docs/2.0/obb.cmn.md

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Esri PDAL
INTENSITY Intensity
CLASS_CODE ClassFlags
FLAGS Flag
RETURNS NumberOfReturns
USER_DATA UserData
POINT_SRC_ID PointSourceId
GPS_TIME GpsTime
SCAN_ANGLE ScanAngleRank
RGB Red

Example: --readers.i3s.dimensions="returns, rgb"

min_density and max_density
This is the range of density of the points in the nodes that will be selected during the
read. The density of a node is calculated by the vertex count divided by the effective area
of the node. Nodes do not have a uniform density across depths in the tree, so some
sections may be more or less dense than others. The default values for these parameters
will pull all the leaf nodes (the highest resolution).

Example: --readers.i3s.min_density=2 --readers.i3s.max_density=2.5

7.3.13 readers.ilvis2

The ILVIS2 reader read from files in the ILVIS2 format. See the product spec
(https://nsidc.org/data/ilvis2) for more information.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.3. Readers 87

https://nsidc.org/data/ilvis2

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 3: Dimensions provided by the ILVIS2 reader

Example

[
{

"type":"readers.ilvis2",
"filename":"ILVIS2_GL2009_0414_R1401_042504.TXT",
"metadata":"ILVIS2_GL2009_0414_R1401_042504.xml"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

88 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
File to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

mapping
Which ILVIS2 field type to map to X, Y, Z dimensions ‘LOW’, ‘CENTROID’, or ‘HIGH’
[Default: ‘CENTROID’]

metadata
XML metadata file to coincidentally read [Optional]

7.3.14 readers.las

The LAS Reader supports reading from LAS format
(http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html) files,
the standard interchange format for LIDAR data. The reader does NOT support point formats
containing waveform data (4, 5, 9 and 10).

The reader also supports compressed LAS files, known as LAZ files or LASzip
(http://laszip.org) files. In order to use compressed LAS (LAZ), your version of PDAL must be
built with one of the two supported decompressors, LASzip (http://laszip.org) or LAZperf
(https://github.com/verma/laz-perf). See the compression (page 91) option below for more
information.

Note: LAS stores X, Y and Z dimensions as scaled integers. Users converting an input LAS
file to an output LAS file will frequently want to use the same scale factors and offsets in the
output file as existed in the input file in order to maintain the precision of the data. Use the
forward option on the writers.las (page 162) to facilitate transfer of header information from
source to destination LAS/LAZ files.

Note: LAS 1.4 files can contain datatypes that are actually arrays rather than individual
dimensions. Since PDAL doesn’t support these datatypes, it must map them into datatypes it
supports. This is done by appending the array index to the name of the datatype. For example,

7.3. Readers 89

http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://laszip.org
https://github.com/verma/laz-perf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

datatypes 11 - 20 are two dimensional array types and if a field had the name Foo for datatype
11, PDAL would create the dimensions Foo0 and Foo1 to hold the values associated with LAS
field Foo. Similarly, datatypes 21 - 30 are three dimensional arrays and a field of type 21 with
the name Bar would cause PDAL to create dimensions Bar0, Bar1 and Bar2. See the
information on the extra bytes VLR in the LAS Specification
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf) for more information
on the extra bytes VLR and array datatypes.

Warning: LAS 1.4 files that use the extra bytes VLR and datatype 0 will be accepted, but
the data associated with a dimension of datatype 0 will be ignored (no PDAL dimension
will be created).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

90 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
LAS file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

start
Point at which reading should start (0-indexed). Useful in combination with ‘count’
option to read a subset of points. [Default: 0]

extra_dims
Extra dimensions to be read as part of each point beyond those specified by the LAS
point format. The format of the option is <dimension_name>=<type>[, ...]. Any
valid PDAL type (page 373) can be specified.

Note: The presence of an extra bytes VLR when reading a version 1.4 file or a version
1.0 - 1.3 file with use_eb_vlr set causes this option to be ignored.

use_eb_vlr
If an extra bytes VLR is found in a version 1.0 - 1.3 file, use it as if it were in a 1.4 file.
This option has no effect when reading a version 1.4 file. [Default: false]

compression
May be set to “lazperf” or “laszip” to choose either the LazPerf decompressor or the
LASzip decompressor for LAZ files. PDAL must have been built with support for the
decompressor being requested. The LazPerf decompressor doesn’t support version 1
LAZ files or version 1.4 of LAS. [Default: ‘none’]

ignore_vlr
A comma-separated list of “userid/record_id” pairs specifying VLR records that should
not be loaded.

fix_dims
Make invalid dimension names valid by converting disallowed characters to ‘_’. Only
applies to names specified in an extra-bytes VLR. [Default: true]

nosrs
Don’t read the SRS VLRs. The data will not be assigned an SRS. This option is for use

7.3. Readers 91

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

only in special cases where processing the SRS could cause performance issues.
[Default: false]

7.3.15 readers.matlab

The Matlab Reader supports readers Matlab .mat files. Data must be in a Matlab struct
(https://www.mathworks.com/help/matlab/ref/struct.html), with field names that correspond to
dimension (page 365) names. No ability to provide a name map is yet provided.

Additionally, each array in the struct should ideally have the same number of points. The reader
takes its number of points from the first array in the struct. If the array has fewer elements than
the first array in the struct, the point’s field beyond that number is set to zero.

Note: The Matlab reader requires the Mat-File API from MathWorks, and it must be explicitly
enabled at compile time with the BUILD_PLUGIN_MATLAB=ON variable

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.matlab",
"struct":"PDAL",
"filename":"autzen.mat"

},
{

"type":"writers.las",
"filename":"output.las"

}
]

92 Chapter 7. Drivers

https://www.mathworks.com/help/matlab/ref/struct.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
Input file name. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

struct
Array structure name to read. [Default: ‘PDAL’]

7.3.16 readers.memoryview

The memoryview reader is a special stage that allows the reading of point data arranged in rows
directly from memory – each point needs to have dimension data arranged at a fixed offset from
a base address of the point. Before each point is read, the memoryview reader calls a function
that should return the point’s base address, or a null pointer if there are no points to be read.

Note that the memoryview reader does not currently work with columnar data (data where
individual dimensions are packed into arrays).

Usage

The memoryview reader cannot be used from the command-line. It is for use by software using
the PDAL API.

After creating an instance of the memoryview reader, the user should call pushField() for every
dimension that should be read from memory. pushField() takes a single argument, a
MemoryViewReader::Field, that consists of a dimension name, a type and an offset from the
point base address:

struct Field
{

std::string m_name;
Dimension::Type m_type;
size_t m_offset;

};
(continues on next page)

7.3. Readers 93

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)

void pushField(const Field&);

The user should also call setIncrementer(), a function that takes a single argument, a
std::function that receives the ID of the point to be added and should return the base address of
the point data, or a null pointer if there are no more points to be read.

using PointIncrementer = std::function<char *(PointId)>;

void setIncrementer(PointIncrementer inc);

Options

None.

7.3.17 readers.mbio

The mbio reader allows sonar bathymetry data to be read into PDAL and treated as data
collected using LIDAR sources. PDAL uses the MB-System
(https://www.mbari.org/products/research-software/mb-system/) library to read the data and
therefore supports all formats
(http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html) supported by that
library. Some common sonar systems are NOT supported by MB-System, notably Kongsberg,
Reson and Norbit. The mbio reader reads each “beam” of data after averaging and processing
by the MB-System software and stores the values for the dimensions ‘X’, ‘Y’, ‘Z’ and
‘Amplitude’. X and Y use longitude and latitude for units and the Z values are in meters
(negative, being below the surface). Units for ‘Amplitude’ is not specified and may vary.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

94 Chapter 7. Drivers

https://www.mbari.org/products/research-software/mb-system/
http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This reads beams from a sonar data file and writes points to a LAS file.

[
{

"type" : "readers.mbio",
"filename" : "shipdata.m57",
"format" : "MBF_EM3000RAW"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

filename
Filename to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

format
Name of number of format of file being read. See MB-System documentation for a list of
all formats (http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html).
[Required]

datatype
Type of data to read. Either ‘multibeam’ or ‘sidescan’. [Default: ‘multibeam’]

timegap
The maximum number of seconds that can elapse between pings before the end of the
data stream is assumed. [Default: 1.0]

speedmin
The minimum speed that the ship can be moving to before the end of the data stream is
assumed. [Default: 0]

7.3. Readers 95

http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.3.18 readers.nitf

The NITF (http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format) format is
used primarily by the US Department of Defense and supports many kinds of data inside a
generic wrapper. The NITF 2.1 (http://www.gwg.nga.mil/ntb/baseline/docs/2500c/index.html)
version added support for LIDAR point cloud data, and the NITF file reader supports reading
that data, if the NITF file supports it.

• The file must be NITF 2.1

• There must be at least one Image segment (“IM”).

• There must be at least one DES segment
(http://jitc.fhu.disa.mil/cgi/nitf/registers/desreg.aspx) (“DE”) named “LIDARA”.

• Only LAS or LAZ data may be stored in the LIDARA segment

The dimensions produced by the reader match exactly to the LAS dimension names and types
for convenience in file format transformation.

Note: Only LAS or LAZ data may be stored in the LIDARA segment. PDAL uses the
readers.las (page 89) and writers.las (page 162) to actually read and write the data.

Note: PDAL uses a fork of the NITF Nitro
(http://nitro-nitf.sourceforge.net/wikka.php?wakka=HomePage) library available at
https://github.com/hobu/nitro for NITF read and write support.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

96 Chapter 7. Drivers

http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format
http://www.gwg.nga.mil/ntb/baseline/docs/2500c/index.html
http://jitc.fhu.disa.mil/cgi/nitf/registers/desreg.aspx
http://nitro-nitf.sourceforge.net/wikka.php?wakka=HomePage
https://github.com/hobu/nitro

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.nitf",
"filename":"mynitf.nitf"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

filename
Filename to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

extra_dims
Extra dimensions to be read as part of each point beyond those specified by the LAS
point format. The format of the option is <dimension_name>=<type>[, ...]. Any
PDAL type (page 373) can be specified.

Note: The presence of an extra bytes VLR when reading a version 1.4 file or a version
1.0 - 1.3 file with use_eb_vlr set causes this option to be ignored.

use_eb_vlr
If an extra bytes VLR is found in a version 1.0 - 1.3 file, use it as if it were in a 1.4 file.
This option has no effect when reading a version 1.4 file. [Default: false]

compression
May be set to “lazperf” or “laszip” to choose either the LazPerf decompressor or the
LASzip decompressor for LAZ files. PDAL must have been built with support for the

7.3. Readers 97

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

decompressor being requested. The LazPerf decompressor doesn’t support version 1
LAZ files or version 1.4 of LAS. [Default: “none”]

7.3.19 readers.numpy

PDAL has support for processing data using filters.python (page 353), but it is also convenient
to read data from Numpy (http://www.numpy.org/) for processing in PDAL.

Numpy (http://www.numpy.org/) supports saving files with the save method, usually with the
extension .npy. As of PDAL 1.7.0, .npz files were not yet supported.

Warning: It is untested whether problems may occur if the versions of Python used in
writing the file and for reading the file don’t match.

Array Types

readers.numpy supports reading data in two forms:

• As a structured array (https://docs.scipy.org/doc/numpy/user/basics.rec.html) with
specified field names (from laspy (https://github.com/laspy/laspy) for example)

• As a standard array that contains data of a single type.

Structured Arrays

Numpy arrays can be created as structured data, where each entry is a set of fields. Each field
has a name. As an example, laspy (https://github.com/laspy/laspy) provides its .points as an
array of named fields:

import laspy
f = laspy.file.File('test/data/autzen/autzen.las')
print (f.points[0:1])

array([((63608330, 84939865, 40735, 65, 73, 1, -11, 126, 7326, 245385.
→˓60820904),)],
dtype=[('point', [('X', '<i4'), ('Y', '<i4'), ('Z', '<i4'), ('intensity
→˓', '<u2'), ('flag_byte', 'u1'), ('raw_classification', 'u1'), ('scan_
→˓angle_rank', 'i1'), ('user_data', 'u1'), ('pt_src_id', '<u2'), ('gps_
→˓time', '<f8')])])

98 Chapter 7. Drivers

http://www.numpy.org/
http://www.numpy.org/
https://docs.scipy.org/doc/numpy/user/basics.rec.html
https://github.com/laspy/laspy
https://github.com/laspy/laspy

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The numpy reader supports reading these Numpy arrays and mapping field names to standard
PDAL dimension (page 365) names. If that fails, the reader retries by removing _, -, or space
in turn. If that also fails, the array field names are used to create custom PDAL dimensions.

Standard (non-structured) Arrays

Arrays without field information contain a single datatype. This datatype is mapped to a
dimension specified by the dimension option.

f = open('./perlin.npy', 'rb')
data = np.load(f,)

data.shape
(100, 100)

data.dtype
dtype('float64')

pdal info perlin.npy --readers.numpy.dimension=Intensity --readers.
→˓numpy.assign_z=4

{
"filename": "..\/test\/data\/plang\/perlin.npy",
"pdal_version": "1.7.1 (git-version: 399e19)",
"stats":
{

"statistic":
[

{
"average": 49.5,
"count": 10000,
"maximum": 99,
"minimum": 0,
"name": "X",
"position": 0,
"stddev": 28.86967866,
"variance": 833.4583458

},
{

"average": 49.5,
"count": 10000,
"maximum": 99,
"minimum": 0,

(continues on next page)

7.3. Readers 99

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"name": "Y",
"position": 1,
"stddev": 28.87633116,
"variance": 833.8425015

},
{

"average": 0.01112664759,
"count": 10000,
"maximum": 0.5189296418,
"minimum": -0.5189296418,
"name": "Intensity",
"position": 2,
"stddev": 0.2024120437,
"variance": 0.04097063545

}
]

}
}

X, Y and Z Mapping

Unless the X, Y or Z dimension is specified as a field in a structured array, the reader will
create dimensions X, Y and Z as necessary and populate them based on the position of each
item of the array. Although Numpy arrays always contain contiguous, linear data, that data can
be seen to be arranged in more than one dimension. A two-dimensional array will cause
dimensions X and Y to be populated. A three dimensional array will cause X, Y and Z to be
populated. An array of more than three dimensions will reuse the X, Y and Z indices for each
dimension over three.

When reading data, X Y and Z can be assigned using row-major (C) order or column-major
(Fortran) order by using the order option.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

100 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Loading Options

readers.numpy (page 98) supports two modes of operation - the first is to pass a reference to a
.npy file to the filename argument. It will simply load it and read.

The second is to provide a reference to a .py script to the filename argument. It will then
invoke the Python function specified in module and function with the fargs that you
provide.

Loading from a Python script

A reference to a Python function that returns a Numpy array can also be used to tell
readers.numpy (page 98) what to load. The following example itself loads a Numpy array from
a Python script

Python Script

import numpy as np

def load(filename):
array = np.load(filename)
return array

Command Line Invocation

Using the above Python file with its load function, the following pdal info (page 38) invocation
passes in the reference to the filename to load.

pdal info threedim.py \
--readers.numpy.function=load \
--readers.numpy.fargs=threedim.npy \
--driver readers.numpy

7.3. Readers 101

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Pipeline

An example Pipeline (page 55) definition would follow:

[
{

"function": "load",
"filename": "threedim.py",
"fargs": "threedim.npy",
"type": "readers.numpy"

},
...

]

Options

filename
npy file to read or optionally, a .py file that defines a function that returns a Numpy array
using the module, function, and fargs options. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

dimension
Dimension (page 365) name to map raster values

order
Either ‘row’ or ‘column’ to specify assigning the X,Y and Z values in a row-major or
column-major order. [Default: matches the natural order of the array.]

module
The Python module name that is holding the function to run.

function
The function name in the module to call.

fargs
The function args to pass to the function

102 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: The functionality of the ‘assign_z’ option in previous versions is provided with
filters.assign (page 257)

The functionality of the ‘x’, ‘y’, and ‘z’ options in previous versions are generally handled with
the current ‘order’ option.

7.3.20 readers.obj

The OBJ reader reads data from files in the OBJ format. This reader constructs a mesh from
the faces specified in the OBJ file, ignoring vertices that are not associated with any face.
Faces, vertices, vertex normals and vertex textures are read, while all other obj elements (such
as lines and curves) are ignored.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

This pipeline reads from an example OBJ file outputs the vertices as a point to a LAS file.

[
{

"type": "readers.obj",
"filename": "test/data/obj/1.2-with-color.obj"

},
{

"type" : "writers.las",
"filename": "output.las",
"scale_x": 1.0e-5,
"scale_y": 1.0e-5,
"scale_z": 1.0e-5,
"offset_x": "auto",
"offset_y": "auto",
"offset_z": "auto"

}
]

7.3. Readers 103

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

filename
File to read. [Required]

7.3.21 readers.optech

The Optech reader reads Corrected Sensor Data (.csd) files. These files contain scan angles,
ranges, IMU and GNSS information, and boresight calibration values, all of which are
combined in the reader into XYZ points using the WGS84 reference frame.

Default Embedded Stage

This stage is enabled by default

Example

[
{

"type":"readers.optech",
"filename":"input.csd"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

104 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
csd file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.22 readers.pcd

The PCD Reader supports reading from Point Cloud Data (PCD)
(https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html) formatted files, which are
used by the Point Cloud Library (PCL) (http://pointclouds.org).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.pcd",
"filename":"inputfile.pcd"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

7.3. Readers 105

https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html
http://pointclouds.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
PCD file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.23 readers.pgpointcloud

The PostgreSQL Pointcloud Reader allows you to read points from a PostgreSQL database
with PostgreSQL Pointcloud (https://github.com/pramsey/pointcloud) extension enabled. The
Pointcloud extension stores point cloud data in tables that contain rows of patches. Each patch
in turn contains a large number of spatially nearby points.

The reader pulls patches from a table, potentially sub-setting the query with a “where” clause.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

[
{

"type":"readers.pgpointcloud",
"connection":"dbname='lidar' user='user'",
"table":"lidar",
"column":"pa",
"spatialreference":"EPSG:26910",
"where":"PC_Intersects(pa, ST_MakeEnvelope(560037.36, 5114846.

→˓45, 562667.31, 5118943.24, 26910))"
},
{

"type":"writers.text",
(continues on next page)

106 Chapter 7. Drivers

https://github.com/pramsey/pointcloud

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"output.txt"

}
]

Options

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

connection
PostgreSQL connection string. In the form “host=hostname dbname=database
user=username password=pw port=5432” [Required]

table
Database table to read from. [Required]

schema
Database schema to read from. [Default: public]

column
Table column to read patches from. [Default: pa]

7.3.24 readers.ply

The ply reader reads points and vertices from the polygon file format
(http://paulbourke.net/dataformats/ply/), a common file format for storing three dimensional
models. The ply reader can read ASCII and binary ply files.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

7.3. Readers 107

http://paulbourke.net/dataformats/ply/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage supports streaming operations

Example

[
{

"type":"readers.ply",
"filename":"inputfile.ply"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
ply file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.25 readers.pts

The PTS reader reads data from Leica Cyclone PTS files. It infers dimensions from points
stored in a text file.

Default Embedded Stage

This stage is enabled by default

108 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example Pipeline

[
{

"type":"readers.pts",
"filename":"test.pts"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
File to read. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.26 readers.ptx

The PTX reader reads data from Leica Cyclone PTX (http://paulbourke.net/dataformats/ptx/)
files. It infers dimensions from points stored in a text file.

Note: PTX files can contain multiple point clouds stored in a single file. If that is the case, the
reader will read all the points from all of the internal point clouds as one.

Default Embedded Stage

This stage is enabled by default

7.3. Readers 109

http://paulbourke.net/dataformats/ptx/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example Pipeline

[
{

"type":"readers.ptx",
"filename":"test.ptx"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Options

filename
File to read. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

discard_missing_points
Each point cloud in a PTX file is “fully populated”, in that the point cloud will contain
missing points with XYZ values of “0 0 0”. When this option is enabled, we will skip
over any missing input points. [Default: true]

7.3.27 readers.qfit

The QFIT reader read from files in the QFIT format
(http://nsidc.org/data/docs/daac/icebridge/ilatm1b/docs/ReadMe.qfit.txt) originated for the
Airborne Topographic Mapper (ATM) project at NASA Goddard Space Flight Center.

Default Embedded Stage

This stage is enabled by default

110 Chapter 7. Drivers

http://nsidc.org/data/docs/daac/icebridge/ilatm1b/docs/ReadMe.qfit.txt

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.qfit",
"filename":"inputfile.qi",
"flip_coordinates":"false",
"scale_z":"1.0"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

filename
File to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

flip_coordinates
Flip coordinates from 0-360 to -180-180 [Default: true]

scale_z
Z scale. Use 0.001 to go from mm to m. [Default: 1]

little_endian
Are data in little endian format? This should be automatically detected by the driver.
[Optional]

7.3. Readers 111

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.3.28 readers.rdb

The RDB reader reads from files in the RDB format, the in-house format used by RIEGL
Laser Measurement Systems GmbH (http://www.riegl.com).

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Installation

To build PDAL with rdb support, set rdb_DIR to the path of your local rdblib installation.
rdblib can be obtained from the RIEGL download pages
(http://www.riegl.com/members-area/software-downloads/libraries/) with a properly enabled
user account. The rdblib files do not need to be in a system-level directory, though they could
be (e.g. they could be in /usr/local, or just in your home directory somewhere). For help
building PDAL with optional libraries, see the optional library documentation
(http://pdal.io/compilation/unix.html#configure-your-optional-libraries).

Note:

• Minimum rdblib version required to build the driver and run the tests: 2.1.6

• This driver was developed and tested on Ubuntu 17.10 using GCC 7.2.0.

Example

This example pipeline reads points from a RDB file and stores them in LAS format. Only
points classified as “ground points” are read since option filter is set to “riegl.class == 2”
(see line 5).

1 [
2 {
3 "type": "readers.rdb",
4 "filename": "autzen-thin-srs.rdbx",
5 "filter": "riegl.class == 2"

(continues on next page)

112 Chapter 7. Drivers

http://www.riegl.com
http://www.riegl.com
http://www.riegl.com/members-area/software-downloads/libraries/
http://pdal.io/compilation/unix.html#configure-your-optional-libraries

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
6 },
7 {
8 "type": "writers.las",
9 "filename": "autzen-thin-srs.rdbx"

10 }
11]

Options

filename
Name of file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

filter
Point filter expression string (see RDB SDK documentation for details) [Optional]
[Default: empty string (= no filter)]

extras
Read all available dimensions (true) or known PDAL dimensions only (false) [Optional]
[Default: false]

7.3. Readers 113

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dimensions

The reader maps following default RDB point attributes to PDAL dimensions (if they exist in
the RDB file):

RDB attribute PDAL dimension(s)
riegl.id Id::PointId
riegl.source_cloud_id Id::OriginId
riegl.timestamp Id::InternalTime
riegl.xyz Id::X, Id::Y, Id::Z
riegl.intensity Id::Intensity
riegl.amplitude Id::Amplitude
riegl.reflectance Id::Reflectance
riegl.deviation Id::Deviation
riegl.pulse_width Id::PulseWidth
riegl.background_radiation Id::BackgroundRadiation
riegl.target_index Id::ReturnNumber
riegl.target_count Id::NumberOfReturns
riegl.scan_direction Id::ScanDirectionFlag
riegl.scan_angle Id::ScanAngleRank
riegl.class Id::Classification
riegl.rgba Id::Red, Id::Green, Id::Blue
riegl.surface_normal Id::NormalX, Id::NormalY, Id::NormalZ

All other point attributes that may exist in the RDB file are ignored unless the option extras is
set to true. If so, a custom dimension is defined for each additional point attribute, whereas the
dimension name is equal to the point attribute name.

Note: Point attributes are read “as-is”, no scaling or unit conversion is done by the reader. The
only exceptions are point coordinates (riegl.xyz) and surface normals
(riegl.surface_normal) which are transformed to the RDB file’s SRS by applying the
matrix defined in the (optional) RDB file metadata object riegl.geo_tag.

Metadata

The reader adds following objects to the stage’s metadata node:

114 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Object “database”

Contains basic information about the RDB file such as the bounding box, number of points and
the file ID.

Listing 1: Example:

1 {
2 "bounds": {
3 "maximum": {
4 "X": -2504493.762,
5 "Y": -3846841.252,
6 "Z": 4413210.394
7 },
8 "minimum": {
9 "X": -2505882.459,

10 "Y": -3848231.393,
11 "Z": 4412172.548
12 }
13 },
14 "points": 10653,
15 "uuid": "637de54d-7e6b-4004-b6ab-b6bc588ec9ea"
16 }

List “dimensions”

List of point attribute description objects.

Listing 2: Example:

1 [{
2 "compression_options": "shuffle",
3 "default_value": 0,
4 "description": "Cartesian point coordinates wrt. application␣

→˓coordinate system (0: X, 1: Y, 2: Z)",
5 "invalid_value": "",
6 "length": 3,
7 "maximum_value": 535000,
8 "minimum_value": -535000,
9 "name": "riegl.xyz",

10 "resolution": 0.00025,
11 "scale_factor": 1,
12 "storage_class": "variable",

(continues on next page)

7.3. Readers 115

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
13 "title": "XYZ",
14 "unit_symbol": "m"
15 },
16 {
17 "compression_options": "shuffle",
18 "default_value": 0,
19 "description": "Target surface reflectance",
20 "invalid_value": "",
21 "length": 1,
22 "maximum_value": 327.67,
23 "minimum_value": -327.68,
24 "name": "riegl.reflectance",
25 "resolution": 0.01,
26 "scale_factor": 1,
27 "storage_class": "variable",
28 "title": "Reflectance",
29 "unit_symbol": "dB"
30 }]

Details about the point attribute properties see RDB SDK documentation.

Object “metadata”

Contains one sub-object for each metadata object stored in the RDB file.

Listing 3: Example:

1 {
2 "riegl.scan_pattern": {
3 "rectangular": {
4 "phi_start": 45.0,
5 "phi_stop": 270.0,
6 "phi_increment": 0.040,
7 "theta_start": 30.0,
8 "theta_stop": 130.0,
9 "theta_increment": 0.040,

10 "program": {
11 "name": "High Speed"
12 }
13 }
14 },
15 "riegl.geo_tag": {

(continues on next page)

116 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
16 "crs": {
17 "epsg": 4956,
18 "wkt": "GEOCCS[\"NAD83(HARN) \/ Geocentric\",DATUM[\"NAD83(HARN)\

→˓",SPHEROID[\"GRS 1980\",6378137.000,298.257222101,AUTHORITY[\"EPSG\",\
→˓"7019\"]],AUTHORITY[\"EPSG\",\"6152\"]],PRIMEM[\"Greenwich\",0.
→˓0000000000000000,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"Meter\",1.
→˓00000000000000000000,AUTHORITY[\"EPSG\",\"9001\"]],AXIS[\"X\",OTHER],
→˓AXIS[\"Y\",EAST],AXIS[\"Z\",NORTH],AUTHORITY[\"EPSG\",\"4956\"]]"

19 },
20 "pose": [
21 0.837957447, 0.379440385, -0.392240121, -2505819.156,
22 -0.545735575, 0.582617132, -0.602270669, -3847595.645,
23 0.000000000, 0.718736580, 0.695282481, 4412064.882,
24 0.000000000, 0.000000000, 0.000000000, 1.000
25]
26 }
27 }

The riegl.geo_tag object defines the Spatial Reference System (SRS) of the file. The point
coordinates are actually stored in a local coordinate system (usually horizontally leveled) which
is based on the SRS. The transformation from the local system to the SRS is defined by the 4x4
matrix pose which is stored in row-wise order. Point coordinates (riegl.xyz) and surface
normals (riegl.surface_normal) are automatically transformed to the SRS by the reader.

Details about the metadata objects see RDB SDK documentation.

List “transactions”

List of transaction objects describing the history of the file.

Listing 4: Example:

1 [{
2 "agent": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,␣

→˓10:58:39)",
3 "comments": "",
4 "id": 1,
5 "rdb": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,␣

→˓10:58:39)",
6 "settings": {
7 "cache_size": 524288000,
8 "chunk_size": 65536,
9 "chunk_size_lod": 20,

(continues on next page)

7.3. Readers 117

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
10 "compression_level": 10,
11 "primary_attribute": {
12 "compression_options": "shuffle",
13 "default_value": 0,
14 "description": "Cartesian point coordinates wrt. application␣

→˓coordinate system (0: X, 1: Y, 2: Z)",
15 "invalid_value": "",
16 "length": 3,
17 "maximum_value": 535000,
18 "minimum_value": -535000,
19 "name": "riegl.xyz",
20 "resolution": 0.00025,
21 "scale_factor": 1,
22 "storage_class": "variable",
23 "title": "XYZ",
24 "unit_symbol": "m"
25 }
26 },
27 "start": "2018-04-06 10:10:39.336",
28 "stop": "2018-04-06 10:10:39.336",
29 "title": "Database creation"
30 },
31 {
32 "agent": "rdbconvert",
33 "comments": "",
34 "id": 2,
35 "rdb": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,␣

→˓10:58:39)",
36 "settings": "",
37 "start": "2018-04-06 10:10:39.339",
38 "stop": "2018-04-06 10:10:39.380",
39 "title": "Import"
40 },
41 {
42 "agent": "RiSCAN PRO 64 bit v2.6.3",
43 "comments": "",
44 "id": 3,
45 "rdb": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,␣

→˓10:58:39)",
46 "settings": "",
47 "start": "2018-04-06 10:10:41.666",
48 "stop": "2018-04-06 10:10:41.666",
49 "title": "Meta data saved"

(continues on next page)

118 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
50 }]

Details about the transaction objects see RDB SDK documentation.

7.3.29 readers.rxp

The RXP reader read from files in the RXP format, the in-house streaming format used by
RIEGL Laser Measurement Systems GmbH (http://www.riegl.com).

Warning: This software has not been developed by RIEGL, and RIEGL will not provide
any support for this driver. Please do not contact RIEGL with any questions or issues
regarding this driver. RIEGL is not responsible for damages or other issues that arise from
use of this driver. This driver has been tested against RiVLib version 1.39 on a Ubuntu
14.04 using gcc43.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Installation

To build PDAL with rxp support, set RiVLib_DIR to the path of your local RiVLib installation.
RiVLib can be obtained from the RIEGL download pages
(http://www.riegl.com/members-area/software-downloads/libraries/) with a properly enabled
user account. The RiVLib files do not need to be in a system-level directory, though they could
be (e.g. they could be in /usr/local, or just in your home directory somewhere).

7.3. Readers 119

http://www.riegl.com
http://www.riegl.com/members-area/software-downloads/libraries/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This example rescales the points, given in the scanner’s own coordinate system, to values that
can be written to a las file. Only points with a valid gps time, as determined by a pps pulse, are
read from the rxp, since the sync_to_pps option is “true”. Reflectance values are mapped to
intensity values using sensible defaults.

[
{

"type": "readers.rxp",
"filename": "120304_204030.rxp",
"sync_to_pps": "true",
"reflectance_as_intensity": "true"

},
{

"type": "writers.las",
"filename": "outputfile.las",
"discard_high_return_numbers": "true"

}
]

We set the discard_high_return_numbers option to true on the writers.las (page 162).
RXP files can contain more returns per shot than is supported by las, and so we need to
explicitly tell the las writer to ignore those high return number points. You could also use
filters.python (page 353) to filter those points earlier in the pipeline.

Options

filename
File to read from, or rdtp URI for network-accessible scanner. [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

rdtp
Boolean to switch from file-based reading to RDTP-based. [Default: false]

sync_to_pps
If “true”, ensure all incoming points have a valid pps timestamp, usually provided by

120 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

some sort of GPS clock. If “false”, use the scanner’s internal time. [Default: true]

reflectance_as_intensity
If “true”, in addition to storing reflectance values directly, also stores the values as
Intensity by mapping the reflectance values in the range from min_reflectance to
max_reflectance to the range 0-65535. Values less than min_reflectance are assigned the
value 0. Values greater max_reflectance are assigned the value 65535. [Default: true]

min_reflectance
The low end of the reflectance-to-intensity map. [Default: -25.0]

max_reflectance
The high end of the reflectance-to-intensity map. [Default: 5.0]

7.3.30 readers.sbet

The SBET reader read from files in the SBET format, used for exchange data from inertial
measurement units (IMUs). SBET files store angles as radians, but by default this reader
converts all angle-based measurements to degrees. Set angles_as_degrees to false to
disable this conversion.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
"sbetfile.sbet",
"output.las"

]

7.3. Readers 121

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
File to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

angles_as_degrees
Convert all angles to degrees. If false, angles are read as radians. [Default: true]

7.3.31 readers.smrmsg

The SMRMSG reader read from POSPac MMS post-processed accuracy files, used to
describes the accuracy of the post-processed solution (SBET file) and contains the position,
orientation and velocity RMS after smoothing. See writers.sbet (page 182).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
"smrmsg_xxx.out",
"output.txt"

]

122 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
File to read from [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.32 readers.slpk

Scene Layer Packages (SLPK) (https://github.com/Esri/i3s-
spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md#_8_1)
is a specification created by Esri as a format for their 3D Scene Layer and scene services.
SLPK is a format that allows you to package all the necessary I3S (page 85) files together and
store them locally rather than find information through REST.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example will unarchive the slpk file, store it in a temp directory, and traverse it. The data
will be output to a las file. This is done through PDAL’s command line interface or through the
pipeline.

[
{

"type": "readers.slpk",
"filename": "PDAL/test/data/i3s/SMALL_AUTZEN_LAS_All.slpk",

(continues on next page)

7.3. Readers 123

https://github.com/Esri/i3s-spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md#_8_1

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"obb": {

"center": [
636590,
849216,
460

],
"halfSize": [

590,
281,
60

],
"quaternion":
[

0,
0,
0,
1

]
}

}
]

pdal traslate PDAL/test/data/i3s/SMALL_AUTZEN_LAS_All.slpk autzen.las

Options

filename
SLPK file must have a file extension of .slpk. Example: pdal translate
/PDAL/test/data/i3s/SMALL_AUTZEN_LAS_ALL.slpk output.las

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

obb
An oriented bounding box used to filter the data being retrieved. The obb is specified as

124 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

JSON exactly as described by the I3S specification
(https://github.com/Esri/i3s-spec/blob/master/docs/2.0/obb.cmn.md).

dimensions
Comma-separated list of dimensions that should be read. Specify the Esri name, rather
than the PDAL dimension name.

Esri PDAL
INTENSITY Intensity
CLASS_CODE ClassFlags
FLAGS Flag
RETURNS NumberOfReturns
USER_DATA UserData
POINT_SRC_ID PointSourceId
GPS_TIME GpsTime
SCAN_ANGLE ScanAngleRank
RGB Red

Example: --readers.slpk.dimensions="rgb, intensity"

min_density and max_density
This is the range of density of the points in the nodes that will be selected during the
read. The density of a node is calculated by the vertex count divided by the effective area
of the node. Nodes do not have a uniform density across depths in the tree, so some
sections may be more or less dense than others. Default values for these parameters will
select all leaf nodes (the highest resolution).

Example: --readers.slpk.min_density=2 --readers.slpk.max_density=2.5

7.3.33 readers.stac

Spatio Temporal Access Catalog (STAC) (https://stacspec.org/en) is a common language to
describe geospatial information, so it can more easily be worked with, indexed, and discovered.
The STAC reader will read Catalogs and Features. For Catalogs, the reader will iterate through
items available in the Links key, creating a list of reads to accomplish.

Default Embedded Stage

This stage is enabled by default

7.3. Readers 125

https://github.com/Esri/i3s-spec/blob/master/docs/2.0/obb.cmn.md
https://stacspec.org/en

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type": "readers.stac",
"filename": "https://s3-us-west-2.amazonaws.com/usgs-lidar-stac/

→˓ept/catalog.json",
"reader_args": [{"type": "readers.ept", "resolution": 100}],
"items": ["MD_GoldenBeach_2012"],
"catalogs": ["3dep"],
"properties": { "pc:type": ["lidar", "sonar"], "pc:encoding":

→˓"ept" },
"asset_name": "ept.json",
"date_ranges": [

[
"2022-11-11T0:00:0Z",
"2022-11-30T0:00:0Z"

]
],
"validate_schema": true

}
]

pdal info --input https://s3-us-west-2.amazonaws.com/usgs-lidar-stac/
→˓ept/MD_GoldenBeach_2012.json \

--driver readers.stac --asset_name ept.json --summary

Options

filename
STAC endpoint, local or remote, that corresponds to a Catalog, Feature or
ItemCollection.

asset_names
The list of asset names that should be looked at to find the source data. The default is
‘data’.

date_ranges
A list of date ranges to prune Features by. Example: --readers.stac.date_ranges
'[["2022-11-11T0:00:0Z","2022-11-30T0:00:0Z"],...]'

bounds
Bounds to prune Features by. Form: ([minx,maxx],[miny,maxy],[minz,maxz])
Example: --readers.stac.bounds '([-79.0,-74.0],[38.0,39.0])'

126 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

items
List of Regular Expression (https://en.cppreference.com/w/cpp/regex) strings to prune
STAC Item IDs by. Example: --readers.stac.items
'["MD_GoldenBeach_2012", "USGS_LPC\\w{0,}"]'

catalogs
List of Regular Expression (https://en.cppreference.com/w/cpp/regex) strings to prune
STAC Catalog IDs by. Root catalog IDs are always included in the list. Example:
--readers.stac.catalogs '["3dep-test", "USGS"]'

collections
List of Regular Expression (https://en.cppreference.com/w/cpp/regex) strings to prune
STAC Collection IDs by. This will filter by the collections key in a STAC Item and the id
key of the STAC Collection. Example: --readers.stac.collections
'["3dep-test", "USGS"]'

validate_schema
Boolean value determining if the reader should validate the supplied STAC as it’s being
read using JSON schema and the publicly available STAC schemas and list of STAC
extension schemas.

properties
A key value mapping (JSON) of properties and the desired values to prune Features by.
Different keys will be AND’d together, and list of values will OR’d together. Example:
--readers.stac.properties
'{"pc:type":["lidar","sonar"],"pc:encoding":"ept"}' In this example, a
Feature must have a pc:type key with values of either lidar or sonar, and a pc:encoding
key with a value of ept.

reader_args
A list of JSON objects with keys of reader options and the values to pass through. These
will be in the exact same form as a Pipeline Stage object minus the filename.

Exmaple:

--readers.stac.reader_args \
'[{"type": "readers.ept", "resolution": 100}, {"type": "readers.las",
→˓"nosrs": true}]'

catalog_schema_url
URL of JSON schema you’d like to use for JSON schema validation of STAC Catalogs.

collection_schema_url
URL of JSON schema you’d like to use for JSON schema validation of STAC
Collections.

feature_schema_url
URL of JSON schema you’d like to use for JSON schema validation of STAC
Items/Features.

7.3. Readers 127

https://en.cppreference.com/w/cpp/regex
https://en.cppreference.com/w/cpp/regex
https://en.cppreference.com/w/cpp/regex

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Metadata

Metadata outputs will include ids and item_ids for representings STAC Feature Ids, as well as
catalog_ids and collection_ids representing STAC Catalogs and Collections, respectively.

pdal info --summary --driver readers.stac \
--readers.stac.asset_names 'ept.json' \
--readers.stac.asset_names 'data' \
${PDAL_DIR}/test/data/stac/local_catalog/catalog.json

{
"file_size": 1177,
"filename": "/PDAL_DIR/test/data/stac/local_catalog/catalog.json",
"now": "2023-08-07T15:48:59-0500",
"pdal_version": "2.6.0 (git-version: 54be24)",
"reader": "readers.stac",
"summary":
{

"bounds":
{

"maxx": 637179.22,
"maxy": 5740737,
"maxz": 1069,
"minx": -10543360,
"miny": 848935.2,
"minz": -22

},
"dimensions": "ClassFlags, Classification, EdgeOfFlightLine,␣

→˓GpsTime, Intensity, NumberOfReturns, PointSourceId, ReturnNumber,␣
→˓ScanAngleRank, ScanChannel, ScanDirectionFlag, UserData, X, Y, Z,␣
→˓OriginId, Red, Green, Blue",

"metadata":
{

"catalog_ids":
[

"3dep"
],
"collection_ids":
[

"usgs-test"
],
"ids":
[

"IA_SouthCentral_1_2020",
(continues on next page)

128 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"MI_Charlevoix_Islands_TL_2018",
"MD_GoldenBeach_2012",
"Autzen Trim"

],
"item_ids":
[

"IA_SouthCentral_1_2020",
"MI_Charlevoix_Islands_TL_2018",
"MD_GoldenBeach_2012",
"Autzen Trim"

]
},
"num_points": 44851411750

}
}

Curl Timeouts

STAC reader, and PDAL as a whole, rely on curl for external requests. The curl requests default
to a timeout of 5s. If your requests are failing, it could be because the timeout is too short. You
can set CURL_TIMEOUT in your environment to get around this.

To debug your requests to make sure that the timeout is the problem, set VERBOSE=1 in your
environment before running your PDAL task.

VERBOSE=1 CURL_TIMEOUT=30 \
pdal info --summary --driver readers.stac \
--readers.stac.asset_names 'ept.json' \
--readers.stac.asset_names 'data' \
${PDAL_DIR}/test/data/stac/local_catalog/catalog.json

7.3.34 readers.terrasolid

The Terrasolid Reader loads points from Terrasolid (https://www.terrasolid.com/home.php)
files (.bin). It supports both Terrasolid format 1 and format 2.

7.3. Readers 129

https://www.terrasolid.com/home.php

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.terrasolid",
"filename":"autzen.bin"

},
{

"type":"writers.las",
"filename":"output.las"

}
]

Options

filename
Input file name [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.35 readers.text

The text reader reads data from ASCII text files. Each point is represented in the file as a
single line. Each line is expected to be divided into a number of fields by a separator. Each field
represents a value for a point’s dimension. Each value needs to be formatted
(http://en.cppreference.com/w/cpp/string/basic_string/stof) properly for C++ language
double-precision values.

The text reader expects a header line to indicate the dimensions are in each subsequent line.
There are two types of header lines.

130 Chapter 7. Drivers

http://en.cppreference.com/w/cpp/string/basic_string/stof

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Quoted dimension names

When the first character of the header is a double quote, each dimension name is assumed to be
surrounded by double quotes. A single separator character is expected between the dimension
names (spaces are stripped). If no separator character is found, a space is assumed. You can set
the separator (page 133) character if it differs from that in the header. Note that PDAL requires
dimension names that consist only of alphabetic characters and underscores. Edit the header
line or use the header (page 133) option to set the dimension names to ones that PDAL
understands.

Unquoted dimension names

The first non alpha-numeric character encountered is treated as a separator between dimension
names. The separator in the header line can be overridden by the separator (page 133) option.

Each line in the file must contain the same number of fields as indicated by dimension names in
the header. Spaces are generally ignored in the input unless used as a separator. When a space
character is used as a separator, any number of consecutive spaces are treated as single space
and leading/trailing spaces are ignored.

Blank lines are ignored after the header line is read.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example Input File

This input file contains X, Y and Z value for 10 points.

X,Y,Z
289814.15,4320978.61,170.76
289814.64,4320978.84,170.76
289815.12,4320979.06,170.75
289815.60,4320979.28,170.74
289816.08,4320979.50,170.68
289816.56,4320979.71,170.66
289817.03,4320979.92,170.63

(continues on next page)

7.3. Readers 131

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
289817.53,4320980.16,170.62
289818.01,4320980.38,170.61
289818.50,4320980.59,170.58

Example #1

[
{

"type":"readers.text",
"filename":"inputfile.txt"

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

Example #2

This reads the data in the input file as Red, Green and Blue instead of as X, Y and Z.

[
{

"type":"readers.text",
"filename":"inputfile.txt",
"header":"Red, Green, Blue",
"skip":1

},
{

"type":"writers.text",
"filename":"outputfile.txt"

}
]

132 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
text file to read, or “STDIN” to read from standard in [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

header
String to use as the file header. All lines in the file are assumed to be records containing
point data unless skipped with the skip (page 133) option. [Default: None]

separator
Separator character to override that found in header line. [Default: None]

skip
Number of lines to ignore at the beginning of the file. [Default: 0]

7.3.36 readers.tiledb

Implements TileDB (https://tiledb.io) 2.3.0+ storage.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

7.3. Readers 133

https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{
"type":"readers.tiledb",
"array_name":"my_array"

},
{
"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

array_name
TileDB (https://tiledb.io) array to read from. Synonymous with filename. [Required]

config_file
TileDB (https://tiledb.io) configuration file [Optional]

chunk_size
Size of chunks to read from TileDB array [Optional]

stats
Dump query stats to stdout [Optional]

bbox3d
TileDB subarray to read in format ([minx, maxx], [miny, maxy], [minz, maxz])
[Optional]

start_timestamp
Opens the array between a timestamp range of start_timestamp and end_timestamp.
Default is 0. [Optional]

end_timestamp
Opens the array between a timestamp range of start_timestamp and end_timestamp.
Default is UINT64_MAX. [Optional]

timestamp
Synonymous with start_timestamp. [Optional]

strict
Raise an error if the array contains a TileDB attribute not supported by PDAL, the
default is set to true to raise an error for unsupported attribute types [Optional]

count
Maximum number of points to read. [Default: unlimited]

134 Chapter 7. Drivers

https://tiledb.io
https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

7.3.37 readers.tindex

A GDAL tile index (http://www.gdal.org/gdaltindex.html) is an OGR
(http://gdal.org/ogr/)-readable data source of boundary information. PDAL provides a similar
concept for PDAL-readable point cloud data. You can use the tindex (page 48) application to
generate tile index files in any format that OGR (http://gdal.org/ogr/) supports writing. Once
you have the tile index, you can then use the tindex reader to automatically merge and query the
data described by the tiles.

Default Embedded Stage

This stage is enabled by default

Basic Example

Given a tile index that was generated with the following scenario:

pdal tindex index.sqlite \
"/Users/hobu/dev/git/pdal/test/data/las/interesting.las" \
-f "SQLite" \
--lyr_name "pdal" \
--t_srs "EPSG:4326"

Use the following pipeline (page 55) example to read and automatically merge the data.

[
{

"type":"readers.tindex",
"filter_srs":"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_

→˓0=-120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_defs
→˓",

"filename":"index.sqlite",
"where":"location LIKE \'%nteresting.las%\'",
"wkt":"POLYGON ((635629.85000000 848999.70000000, 635629.

(continues on next page)

7.3. Readers 135

http://www.gdal.org/gdaltindex.html
http://gdal.org/ogr/
http://gdal.org/ogr/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓85000000 853535.43000000, 638982.55000000 853535.43000000, 638982.
→˓55000000 848999.70000000, 635629.85000000 848999.70000000))"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

filename
OGROpen’able raster file to read [Required]

count
Maximum number of points to read. [Default: unlimited]

override_srs
Spatial reference to apply to the data. Overrides any SRS in the input itself. Can be
specified as a WKT, proj.4 or EPSG string. Can’t use with ‘default_srs’. [Default: none]

default_srs
Spatial reference to apply to the data if the input does not specify one. Can be specified
as a WKT, proj.4 or EPSG string. Can’t use with ‘override_srs’. [Default: none]

lyr_name
The OGR layer name for the data source to use to fetch the tile index information.

reader_args
A list of JSON objects with keys of reader options and the values to pass through. These
will be in the exact same form as a Pipeline Stage object minus the filename.

Exmaple:

--readers.stac.reader_args \
'[{"type": "readers.ept", "resolution": 100}, {"type": "readers.las",
→˓"nosrs": true}]'

srs_column
The column in the layer that provides the SRS information for the file. Use this if you
wish to override or set coordinate system information for files.

tindex_name
The column name that defines the file location for the tile index file. [Default: location]

sql
OGR SQL (http://www.gdal.org/ogr_sql.html) to use to define the tile index layer.

136 Chapter 7. Drivers

http://www.gdal.org/ogr_sql.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

bounds
A 2D box to pre-filter the tile index. If it is set, it will override any wkt (page 137) option.

wkt
A geometry to pre-filter the tile index using OGR.

t_srs
Reproject the layer SRS, otherwise default to the tile index layer’s SRS. [Default:
“EPSG:4326”]

filter_srs
Transforms any wkt (page 137) or bounds (page 137) option to this coordinate system
before filtering or reading data. [Default: “EPSG:4326”]

where
OGR SQL (http://www.gdal.org/ogr_sql.html) filter clause to use on the layer. It only
works in combination with tile index layers that are defined with lyr_name (page 136)

dialect
OGR SQL (http://www.gdal.org/ogr_sql.html) dialect to use when querying tile index
layer [Default: OGRSQL]

readers.bpf (page 66)
Read BPF files encoded as version 1, 2, or 3. BPF is an NGA specification for point
cloud data.

readers.copc (page 68)
COPC, or Cloud Optimized Point Cloud is an LAZ 1.4 file stored as a clustered octree.

readers.buffer (page 68)
Special stage that allows you to read data from your own PointView rather than fetching
data from a specific reader.

readers.draco (page 71)
Read a buffer in Google Draco format

readers.ept (page 72)
Used for reading Entwine Point Tile (https://entwine.io) format.

readers.e57 (page 76)
Read point clouds in the E57 format.

readers.faux (page 77)
Used for testing pipelines. It does not read from a file or database, but generates synthetic
data to feed into the pipeline.

readers.fbi (page 79)
Read TerraSolid FBI format

readers.gdal (page 80)
Read GDAL readable raster data sources as point clouds.

7.3. Readers 137

http://www.gdal.org/ogr_sql.html
http://www.gdal.org/ogr_sql.html
https://entwine.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

readers.hdf (page 82)
Read data from files in the HDF5 format.

readers.i3s (page 85)
Read data stored in the Esri I3S format. The data is read from an appropriate server.

readers.ilvis2 (page 87)
Read from files in the ILVIS2 format.

readers.las (page 89)
Read ASPRS LAS versions 1.0 - 1.4. Does not support point formats containing
waveform data. LASzip support is also enabled through this driver if LASzip or LAZperf
are found during compilation.

readers.matlab (page 92)
Read point cloud data from MATLAB .mat files where dimensions are stored as arrays in
a MATLAB struct.

readers.mbio (page 94)
Read sonar bathymetry data from formats supported by the MB-System library.

readers.memoryview (page 93)
Read data from memory where dimension data is arranged in rows. For use only with the
PDAL API.

readers.nitf (page 96)
Read point cloud data (LAS or LAZ) wrapped in NITF 2.1 files.

readers.numpy (page 98)
Read point cloud data from Numpy .npy files.

readers.obj (page 103)
Read points and a mesh from Wavefront OBJ files.

readers.optech (page 104)
Read Optech Corrected Sensor Data (.csd) files.

readers.pcd (page 105)
Read files in the PCD format.

readers.pgpointcloud (page 106)
Read point cloud data from a PostgreSQL database with the PostgreSQL Pointcloud
extension enabled.

readers.ply (page 107)
Read points and vertices from either ASCII or binary PLY files.

readers.pts (page 108)
Read data from Leica Cyclone PTS files.

readers.ptx (page 109)
Read data from Leica Cyclone PTX files.

138 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

readers.qfit (page 110)
Read data in the QFIT format originated for NASA’s Airborne Topographic Mapper
project.

readers.rxp (page 119)
Read data in the RXP format, the in-house streaming format used by RIEGL. The reader
requires a copy of RiVLib during compilation.

readers.rdb (page 112)
Read data in the RDB format, the in-house database format used by RIEGL. The reader
requires a copy of rdblib during compilation and usage.

readers.sbet (page 121)
Read the SBET format.

readers.slpk (page 123)
Read data stored in an Esri SLPK file.

readers.stac (page 125)
Read STAC JSON Catalogs and Items with the Pointcloud extension.

readers.terrasolid (page 129)
TerraSolid Reader

readers.text (page 130)
Read point clouds from ASCII text files.

readers.tiledb (page 133)
Read point cloud data from a TileDB instance.

readers.tindex (page 135)
The tindex (tile index) reader allows you to automatically merge and query data
described in tile index files that have been generated using the PDAL tindex command.

7.4 Writers

Writers consume data provided by Readers (page 65). Some writers can consume any
dimension type, while others only understand fixed dimension names.

Note: PDAL predefined dimension names can be found in the dimension registry: Dimensions
(page 365)

7.4. Writers 139

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.1 writers.arrow

The Arrow Writer supports writing to Apache Arrow (https://arrow.apache.org/) Feather
(https://arrow.apache.org/docs/python/feather.html) and Parquet
(https://arrow.apache.org/docs/cpp/parquet.html) file types.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.arrow",
"format":"feather",
"filename":"outputfile.feather"

}
]

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.arrow",
"format":"parquet",
"geoparquet":"true",
"filename":"outputfile.parquet"

}
]

140 Chapter 7. Drivers

https://arrow.apache.org/
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/cpp/parquet.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

batch_size
Number of rows to write as a batch [Default: 65536*4]

filename
Output file to write [Required]

format
File type to write (feather, parquet) [Default: “feather”]

geoarrow_dimension_name
Dimension name to write GeoArrow struct [Default: xyz]

geoparquet
Write WKB column and GeoParquet metadata when writing parquet output

write_pipeline_metadata
Write PDAL pipeline metadata into PDAL:pipeline:metadata of
geoarrow_dimension_name

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.2 writers.bpf

BPF is an NGA specification (https://nsgreg.nga.mil/doc/view?i=4202) for point cloud data.
The PDAL BPF Writer only supports writing of version 3 BPF format files.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.4. Writers 141

https://nsgreg.nga.mil/doc/view?i=4202

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.bpf",
"filename":"inputfile.las"

},
{

"type":"writers.bpf",
"filename":"outputfile.bpf"

}
]

Options

filename
BPF file to write. The writer will accept a filename containing a single placeholder
character (‘#’). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 327), filters.chipper (page 323) or filters.divider (page 325). [Required]

compression
This option can be set to true to cause the file to be written with Zlib compression as
described in the BPF specification. [Default: false]

format
Specifies the format for storing points in the file. [Default: dim]

• dim: Dimension-major (non-interleaved). All data for a single dimension are stored
contiguously.

• point: Point-major (interleaved). All data for a single point are stored contiguously.

• byte: Byte-major (byte-segregated). All data for a single dimension are stored
contiguously, but bytes are arranged such that the first bytes for all points are stored
contiguously, followed by the second bytes of all points, etc. See the BPF
specification for further information.

bundledfile
Path of file to be written as a bundled file (see specification). The path part of the filespec
is removed and the filename is stored as part of the data. This option can be specified as
many times as desired.

header_data
Base64-encoded data that will be decoded and written following the standard BPF header.

142 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

coord_id
The coordinate ID (UTM zone) of the data. Southern zones take negative values. A value
of 0 indicates cartesian instead of UTM coordinates. A value of ‘auto’ will attempt to set
the UTM zone from a suitable spatial reference, or set to 0 if no such SRS is set.
[Default: 0]

scale_x, scale_y, scale_z
Scale to be divided from the X, Y and Z nominal values, respectively, after the offset has
been applied. The special value “auto” can be specified, which causes the writer to select
a scale to set the stored values of the dimensions to range from [0, 2147483647].
[Default: .01]

Note: written value = (nominal value - offset) / scale.

offset_x, offset_y, offset_z
Offset to be subtracted from the X, Y and Z nominal values, respectively, before the
value is scaled. The special value “auto” can be specified, which causes the writer to set
the offset to the minimum value of the dimension. [Default: auto]

Note: written value = (nominal value - offset) / scale.

Note: Because BPF data is always stored in UTM, the XYZ offsets are set to “auto” by
default. This is to avoid truncation of the decimal digits (which may occur with offsets
left at 0).

output_dims
If specified, limits the dimensions written for each point. Dimensions are listed by name
and separated by commas. X, Y and Z are required and must be explicitly listed.

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4. Writers 143

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.3 writers.copc

The COPC Writer supports writing to COPC format (https://copc.io/) files. COPC is Cloud
Optimized Point Clouds, and it is a LAZ 1.4 file that is organized stored as a clustered octree.

Default Embedded Stage

This stage is enabled by default

Note: Visit https://viewer.copc.io to view COPC files in your browser. Simply drag-n-drop the
file from your desktop onto the page, or use

VLRs

VLRs can be created by providing a JSON node called vlrs with objects as shown:

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.las",
"vlrs": [{

"description": "A description under 32 bytes",
"record_id": 42,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21lIHRleHQ="
},
{
"description": "A description under 32 bytes",
"record_id": 43,
"user_id": "hobu",
"filename": "path-to-my-file.input"
},
{
"description": "A description under 32 bytes",
"record_id": 44,
"user_id": "hobu",
"metadata": "metadata_keyname"
}],

(continues on next page)

144 Chapter 7. Drivers

https://copc.io/
https://viewer.copc.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"outputfile.las"

}
]

Note: One of data, filename or metadata must be specified. Data must be specified as base64
encoded strings. The content of a file is inserted as binary. The metadata key specified must
refer to a string or base64 encoded data.

Example

[
"inputfile1.las",
"inputfile2.laz",
{

"type":"writers.copc",
"filename":"outputfile.copc.laz"

}
]

Options

filename
Output filename. [Required]

forward
List of header fields whose values should be preserved from a source LAS file. The
option can be specified multiple times, which has the same effect as listing values
separated by a comma. The following values are valid: filesource_id,
global_encoding, project_id, system_id, software_id, creation_doy,
creation_year, scale_x, scale_y, scale_z, offset_x, offset_y, offset_z. In
addition, the special value header can be specified, which is equivalent to specifying all
the values EXCEPT the scale and offset values. Scale and offset values can be forwarded
as a group by using the special values scale and offset respectively. The special value
all is equivalent to specifying header, scale, offset and vlr (see below). If a header
option is specified explicitly, it will override any forwarded header value. If a LAS file is
the result of multiple LAS input files, the header values to be forwarded must match or
they will be ignored and a default will be used instead.

VLRs can be forwarded by using the special value vlr. VLRs containing the following
User IDs are NOT forwarded: LASF_Projection, liblas, laszip encoded. VLRs

7.4. Writers 145

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

with the User ID LASF_Spec and a record ID other than 0 or 3 are also not forwarded.
These VLRs are known to contain information regarding the formatting of the data and
will be rebuilt properly in the output file as necessary. Unlike header values, VLRs from
multiple input files are accumulated and each is written to the output file. Forwarded
VLRs may contain duplicate User ID/Record ID pairs.

software_id
String identifying the software that created this LAS file. [Default: PDAL version num
(build num)]”

creation_doy
Number of the day of the year (January 1 == 1) this file is being created.

creation_year
Year (Gregorian) this file is being created.

system_id
String identifying the system that created this LAS file. [Default: “PDAL”]

global_encoding
Various indicators to describe the data. See the LAS documentation. Note that PDAL
will always set bit four when creating LAS version 1.4 output. [Default: 0]

project_id
UID reserved for the user [Default: Nil UID]

scale_x, scale_y, scale_z
Scale to be divided from the X, Y and Z nominal values, respectively, after the offset has
been applied. The special value auto can be specified, which causes the writer to select a
scale to set the stored values of the dimensions to range from [0, 2147483647]. [Default:
.01]

Note: written value = (nominal value - offset) / scale.

offset_x, offset_y, offset_z
Offset to be subtracted from the X, Y and Z nominal values, respectively, before the
value is scaled. The special value auto can be specified, which causes the writer to set
the offset to the minimum value of the dimension. [Default: 0]

Note: written value = (nominal value - offset) / scale.

filesource_id
The file source id number to use for this file (a value between 0 and 65535 - 0 implies
“unassigned”) [Default: 0]

pipeline
Write a JSON representation of the running pipeline as a VLR.

vlrs
Add VLRS specified as json. See VLRs (page 144) above for details.

146 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

a_srs
Spatial reference to use to write output.

threads
Number of threads to use when writing [Default: 10]

extra_dims
Extra dimensions to be written as part of each point beyond those specified by the LAS
point format. The format of the option is <dimension_name>=<type> [, ...]. Any
valid PDAL type (page 373) can be specified.

The special value all can be used in place of a dimension/type list to request that all
dimensions that can’t be stored in the predefined LAS point record get added as extra
data at the end of each point record.

enhanced_srs_vlrs
Write WKT2 and PROJJSON as VLR [Default: false]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.4 writers.draco

Draco (https://github.com/google/draco) is a library for compressing and decompressing 3D
geometric meshes and point clouds and was designed and built for compression efficiency and
speed. The code supports compressing points, connectivity information, texture coordinates,
color information, normals, and any other generic attributes associated with geometry.

This writer aims to use the encoding feature of the Draco library to compress and output Draco
files.

7.4. Writers 147

https://github.com/google/draco

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This example will read in a las file and output a Draco encoded file, with options to include
PDAL dimensions X, Y, and Z as double, and explicitly setting quantization levels of some of
the Draco attributes.

[
{

"type": "readers.las",
"filename": "color.las"

},
{

"type": "writers.draco",
"filename": "draco.drc",
"dimensions": {

"X": "float",
"Y": "float",
"Z": "float"

},
"quantization": {

"NORMAL": 8,
"TEX_COORD": 7,
"GENERIC": 6

}
}

]

Options

filename
Output file name. [Required]

dimensions
A json map of PDAL dimensions to desired data types. Data types must be string and
must be available in PDAL’s Type specification
(https://github.com/PDAL/PDAL/blob/master/pdal/DimUtil.hpp). Any dimension that
combine to make one Draco dimension must all have the same type (eg. POSITION is
made up of X, Y, and Z. X cannot by float while Y and Z are specified as double)

This argument will filter the dimensions being written to only the dimensions that have
been specified. If that dimension is part of a multi-dimensional draco attribute
(POSITION=[X,Y,Z]), then any dimension not specified will be filled in with zeros.

quantization
A json map of Draco attributes to desired quantization levels. These levels must be

148 Chapter 7. Drivers

https://github.com/PDAL/PDAL/blob/master/pdal/DimUtil.hpp

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

integers. Default quantization levels are below, and will be overridden by any values
placed in the options.

{
"POSITION": 11,
"NORMAL": 7,
"TEX_COORD": 10,
"COLOR": 8,
"GENERIC": 8

}

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.5 writers.ept_addon

The EPT Addon Writer supports writing additional dimensions to Entwine Point Tile
(https://entwine.io/entwine-point-tile.html) datasets. The EPT addon writer may only be used
in a pipeline with an EPT reader (page 72), and it creates additional attributes for an existing
dataset rather than creating a brand new one.

The addon dimensions created by this writer are stored independently from the corresponding
EPT dataset, therefore write-access to the EPT resource itself is not required to create and use
addon dimensions.

Default Embedded Stage

This stage is enabled by default

7.4. Writers 149

https://entwine.io/entwine-point-tile.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This example downloads the Autzen dataset (10M points) and runs the SMRF filter (page 198),
which populates the Classification dimension with ground values, and writes the resulting
attribute to an EPT addon dataset on the local filesystem.

[
{

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json"

},
{

"type": "filters.assign",
"assignment": "Classification[:]=0"

},
{

"type": "filters.smrf"
},
{

"type": "writers.ept_addon",
"addons": { "~/entwine/addons/autzen/smrf": "Classification" }

}
]

And here is a follow-up example of reading this dataset with the EPT reader (page 72) with the
created addon overwriting the Classification value. The output is then written to a single
file with the LAS writer (page 162).

[
{

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json",
"addons": { "Classification": "~/entwine/addons/autzen/smrf" }

},
{

"type": "writers.las",
"filename": "autzen-ept-smrf.las"

}
]

This is an example of using multiple mappings in the addons option to apply a new color
scheme with filters.colorinterp (page 222) mapping the Red, Green, and Blue dimensions to
new values.

150 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[
{

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json"

},
{

"type": "filters.colorinterp"
},
{

"type": "writers.ept_addon",
"addons": {

"~/entwine/addons/autzen/interp/Red": "Red",
"~/entwine/addons/autzen/interp/Green": "Green",
"~/entwine/addons/autzen/interp/Blue": "Blue"

}
}

]

The following pipeline will read the data with the new colors:

[
{

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json",
"addons": {

"Red": "~/entwine/addons/autzen/interp/Red",
"Green": "~/entwine/addons/autzen/interp/Green",
"Blue": "~/entwine/addons/autzen/interp/Blue"

}
},
{

"type": "writers.las",
"filename": "autzen-ept-interp.las"

}
]

7.4. Writers 151

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

addons
A JSON object whose keys represent output paths for each addon dimension, and whose
corresponding values represent the attributes to be written to these addon dimensions.
[Required]

Note: The addons option is reversed between the EPT reader and addon-writer: in each case,
the right-hand side represents an assignment to the left-hand side. In the writer, the dimension
value is assigned to an addon path. In the reader, the addon path is assigned to a dimension.

threads
Number of worker threads used to write EPT addon data. A minimum of 4 will be used
no matter what value is specified.

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.6 writers.e57

The E57 Writer supports writing to E57 files.

The writer supports E57 files with Cartesian point clouds.

Note: E57 files can contain multiple point clouds stored in a single file. The writer will only
write a single cloud per file.

Note: Spherical format points are not supported.

Note: The E57 cartesianInvalidState dimension is mapped to the Omit PDAL dimension. A
range filter can be used to filter out the invalid points.

152 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.e57",
"filename":"outputfile.e57",
"double_precision":false

}
]

Options

filename
E57 file to write [Required]

double_precision
Use double precision for storage (false by default).

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4. Writers 153

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.7 writers.fbi

The fbi writer writes the FastBinary file format. FastBinary is the internal format for
TerraScan (https://terrasolid.com/products/terrascan/). This driver allows to write FBI files in
version 1 of the FBI specification.

Note: Support for all point attributes in LAS 1.2 format so data can be converted between
LAS 1.2 and Fast Binary formats without any loss of point attribute information.

Point attributes are stored as attribute streams instead of point records. This makes it possible
for reading software to read only those attributes it is interested in.

Default Embedded Stage

This stage is enabled by default

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.fbi",
"filename":"outputfile.fbi"

}
]

Options

filename
FBI file to write [Required]

154 Chapter 7. Drivers

https://terrasolid.com/products/terrascan/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.8 writers.fbx

Output to the Autodesk FBX format. You must use a filter that creates a mesh, such as
filters.poisson (page 346) or filters.greedyprojection, in order to use this writer.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Compilation

You must download and install the Autodesk SDK and then compile the PDAL FBX plugin
against it. Visit
https://www.autodesk.com/developer-network/platform-technologies/fbx-sdk-2019-0 to obtain
a current copy of the SDK.

Example Windows CMake configuration

::
-DFBX_ROOT_DIR:FILEPATH=”C:fbx2019.0” ^ -DBUILD_PLUGIN_FBX=ON ^

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"filters.poisson"
},
{

"type":"writers.fbox",
"filename":"outputfile.fbx"

}
]

..code-block:: shell

pdal translate autzen.las autzen.fbx -f poisson

7.4. Writers 155

https://www.autodesk.com/developer-network/platform-technologies/fbx-sdk-2019-0

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

filename
FBX filename to write. [Required]

ascii
Write ASCII FBX format. [Default: false]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.9 writers.gdal

The GDAL writer creates a raster from a point cloud using an interpolation algorithm. Output
is produced using GDAL (http://gdal.org) and can use any driver that supports creation of
rasters (http://www.gdal.org/formats_list.html). A data_type (page 158) can be specified for the
raster (double, float, int32, etc.). If no data type is specified, the data type with the largest range
supported by the driver is used.

The technique used to create the raster is a simple interpolation where each point that falls
within a given radius (page 158) of a raster cell center potentially contributes to the raster’s
value. If no radius is provided, it is set to the product of the resolution (page 158) and the
square root of two. If a circle with the provided radius doesn’t encompass the entire cell, it is
possible that some points will not be considered at all, including those that may be within the
bounds of the raster cell.

The GDAL writer creates rasters using the data specified in the dimension (page 159) option
(defaults to Z). The writer creates up to six rasters based on different statistics in the output
dataset. The order of the layers in the dataset is as follows:

min
Give the cell the minimum value of all points within the given radius.

max
Give the cell the maximum value of all points within the given radius.

mean
Give the cell the mean value of all points within the given radius.

156 Chapter 7. Drivers

http://gdal.org
http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

idw
Cells are assigned a value based on Shepard’s inverse distance weighting
(https://en.wikipedia.org/wiki/Inverse_distance_weighting) algorithm, considering all
points within the given radius.

count
Give the cell the number of points that lie within the given radius.

stdev
Give the cell the population standard deviation of the points that lie within the given
radius.

If no points fall within the circle about a raster cell, a secondary algorithm can be used to
attempt to provide a value after the standard interpolation is complete. If the window_size
(page 159) option is non-zero, the values of a square of rasters surrounding an empty cell is
applied using inverse distance weighting of any non-empty cells. The value provided for
window_size is the maximum horizontal or vertical distance that a donor cell may be in order
to contribute to the subject cell (A window_size of 1 essentially creates a 3x3 array around the
subject cell. A window_size of 2 creates a 5x5 array, and so on.)

Cells that have no value after interpolation are given a value specified by the nodata (page 158)
option.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Basic Example

This pipeline reads the file autzen_trim.las and creates a Geotiff dataset called outputfile.tif.
Since output_type isn’t specified, it creates six raster bands (“min”, “max”, “mean”, “idx”,
“count” and “stdev”) in the output dataset. The raster cells are 10x10 and the radius used to
locate points whose values contribute to the cell value is 14.14.

[
"pdal/test/data/las/autzen_trim.las",
{

"resolution": 10,
"radius": 14.14,

(continues on next page)

7.4. Writers 157

https://en.wikipedia.org/wiki/Inverse_distance_weighting

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"outputfile.tif"

}
]

Options

filename
Name of output file. The writer will accept a filename containing a single placeholder
character (#). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 327), filters.chipper (page 323) or filters.divider (page 325).[Required]

binmode:
If ‘true’, only points inside the raster pixel will be considered for statistics, and no
distance-based summary or interpolation will be applied [Default: false]

resolution
Length of raster cell edges in X/Y units. [Required]

radius
Radius about cell center bounding points to use to calculate a cell value. [Default:
resolution (page 158) * sqrt(2)]

power
Exponent of the distance when computing IDW. Close points have higher significance
than far points. [Default: 1.0]

gdaldriver
GDAL code of the GDAL driver (http://www.gdal.org/formats_list.html) to use to write
the output. [Default: “GTiff”]

gdalopts
A list of key/value options to pass directly to the GDAL driver. The format is
name=value,name=value,. . . The option may be specified any number of times.

Note: The INTERLEAVE GDAL driver option is not supported. writers.gdal always
uses BAND interleaving.

data_type
The data type (page 373) to use for the output raster. Many GDAL drivers only support a
limited set of output data types. [Default: depends on the driver]

158 Chapter 7. Drivers

http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

nodata
The value to use for a raster cell if no data exists in the input data with which to compute
an output cell value. [Default: depends on the data_type (page 158). -9999 for double,
float, int and short, 9999 for unsigned int and unsigned short, 255 for unsigned char and
-128 for char]

output_type
A comma separated list of statistics for which to produce raster layers. The supported
values are “min”, “max”, “mean”, “idw”, “count”, “stdev” and “all”. The option may be
specified more than once. [Default: “all”]

window_size
The maximum distance from a donor cell to a target cell when applying the fallback
interpolation method. See the stage description for more information. [Default: 0]

dimension
A dimension name to use for the interpolation. [Default: “Z”]

bounds
The bounds of the data to be written. Points not in bounds are discarded. The format is
([minx, maxx],[miny,maxy]). [Optional]

origin_x
X origin (lower left corner) of the grid. [Default: None]

origin_y
Y origin (lower left corner) of the grid. [Default: None]

width
Number of cells in the X direction. [Default: None]

height
Number of cells in the Y direction. [Default: None]

override_srs
Write the raster with the provided SRS. [Default: None]

default_srs
Write the raster with the provided SRS if none exists. [Default: None]

metadata:
Add or set GDAL metadata to set on the raster, in the form
NAME=VALUE,NAME2=VALUE2,NAME3=VALUE3 [Default: None]

pdal_metadata:
Write PDAL’s pipeline and metadata as base64 to the GDAL PAM metadata [Default:
False]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

7.4. Writers 159

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

Note: You may use the ‘bounds’ option, or ‘origin_x’, ‘origin_y’, ‘width’ and ‘height’, but not
both.

Note: Unless the raster being written is empty, the spatial reference will automatically come
from the data and does not need to be set with ‘override_srs’ or ‘default_srs’.

7.4.10 writers.gltf

GLTF is a file format specification (https://www.khronos.org/gltf/) for 3D graphics data. If a
mesh has been generated for a PDAL point view, the GLTF Writer will produce simple output
in the GLTF format. PDAL does not currently support many of the attributes that can be found
in a GLTF file. This writer creates a binary GLTF (extension ‘.glb’).

Default Embedded Stage

This stage is enabled by default

Example

[
"infile.las",
{

"type": "filters.poisson",
"depth": 12

},
{

"type":"writers.gltf",
"filename":"output.glb",
"red": 0.8,
"metallic": 0.5

(continues on next page)

160 Chapter 7. Drivers

https://www.khronos.org/gltf/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
}

]

Options

filename
Name of the GLTF (.glb) file to be written. [Required]

metallic
The metallic factor of the faces. [Default: 0]

roughness
The roughness factor of the faces. [Default: 0]

red
The base red component of the color applied to the faces. [Default: 0]

green
The base green component of the color applied to the faces. [Default: 0]

blue
The base blue component of the color applied to the faces. [Default: 0]

alpha
The alpha component to be applied to the faces. [Default: 1.0]

double_sided
Whether the faces are colored on both sides, or just the side visible from the initial
observation point (positive normal vector). [Default: false]

colors
Write color data for each vertex. Red, Green and Blue dimensions must exist. Note that
most renderers will “interpolate the color of each vertex across a face, so this may look
odd.” [Default: false]

normals
Write vertex normals. NormalX, NormalY and NormalZ dimensions must exist.
[Default: false]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

7.4. Writers 161

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.11 writers.las

The LAS Writer supports writing to LAS format
(http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html) files,
the standard interchange file format for LIDAR data.

Warning: Scale/offset are not preserved from an input LAS file. See below for
information on the scale/offset options and the forward (page 164) option.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

VLRs

VLRs can be created by providing a JSON node called vlrs with objects as shown:

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.las",
"vlrs": [{

"description": "A description under 32 bytes",
"record_id": 42,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21lIHRleHQ="
},
{
"description": "A description under 32 bytes",

(continues on next page)

162 Chapter 7. Drivers

http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"record_id": 43,
"user_id": "hobu",
"filename": "path-to-my-file.input"
},
{
"description": "A description under 32 bytes",
"record_id": 44,
"user_id": "hobu",
"metadata": "metadata_keyname"
}],

"filename":"outputfile.las"
}

]

Note: One of data, filename or metadata must be specified. Data must be specified as base64
encoded strings. The content of a file is inserted as binary. The metadata key specified must
refer to a string or base64 encoded data.

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.las",
"filename":"outputfile.las"

}
]

Options

filename
Output filename. The writer will accept a filename containing a single placeholder
character (#). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a

7.4. Writers 163

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 327), filters.chipper (page 323) or filters.divider (page 325). [Required]

forward
List of header fields whose values should be preserved from a source LAS file. The
option can be specified multiple times, which has the same effect as listing values
separated by a comma. The following values are valid: major_version,
minor_version, dataformat_id, filesource_id, global_encoding,
project_id, system_id, software_id, creation_doy, creation_year, scale_x,
scale_y, scale_z, offset_x, offset_y, offset_z. In addition, the special value
header can be specified, which is equivalent to specifying all the values EXCEPT the
scale and offset values. Scale and offset values can be forwarded as a group by using the
special values scale and offset respectively. The special value all is equivalent to
specifying header, scale, offset and vlr (see below). If a header option is specified
explicitly, it will override any forwarded header value. If a LAS file is the result of
multiple LAS input files, the header values to be forwarded must match or they will be
ignored and a default will be used instead.

VLRs can be forwarded by using the special value vlr. VLRs containing the following
User IDs are NOT forwarded: LASF_Projection, liblas, laszip encoded. VLRs
with the User ID LASF_Spec and a record ID other than 0 or 3 are also not forwarded.
These VLRs are known to contain information regarding the formatting of the data and
will be rebuilt properly in the output file as necessary. Unlike header values, VLRs from
multiple input files are accumulated and each is written to the output file. Forwarded
VLRs may contain duplicate User ID/Record ID pairs.

minor_version
All LAS files are version 1, but the minor version (0 - 4) can be specified with this
option. [Default: 2]

software_id
String identifying the software that created this LAS file. [Default: PDAL version num
(build num)]”

creation_doy
Number of the day of the year (January 1 == 1) this file is being created.

creation_year
Year (Gregorian) this file is being created.

dataformat_id
Controls whether information about color and time are stored with the point information
in the LAS file. [Default: 3]

• 0 == no color or time stored

• 1 == time is stored

• 2 == color is stored

164 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• 3 == color and time are stored

• 4 [Not Currently Supported]

• 5 [Not Currently Supported]

• 6 == time is stored (version 1.4+ only)

• 7 == time and color are stored (version 1.4+ only)

• 8 == time, color and near infrared are stored (version 1.4+ only)

• 9 [Not Currently Supported]

• 10 [Not Currently Supported]

system_id
String identifying the system that created this LAS file. [Default: “PDAL”]

a_srs
The spatial reference system of the file to be written. Can be an EPSG string (e.g.
“EPSG:26910”) or a WKT string. [Default: Not set]

global_encoding
Various indicators to describe the data. See the LAS documentation. Note that PDAL
will always set bit four when creating LAS version 1.4 output. [Default: 0]

project_id
UID reserved for the user [Default: Nil UID]

compression
Set to “true” to apply compression to the output, creating a LAZ file (using the LazPerf
compressor) instead of a LAS file. For backwards compatibility, “lazperf” or “laszip” are
still accepted, but those values are treated as “true”. [Default: “false”]

scale_x, scale_y, scale_z
Scale to be divided from the X, Y and Z nominal values, respectively, after the offset has
been applied. The special value auto can be specified, which causes the writer to select a
scale to set the stored values of the dimensions to range from [0, 2147483647]. [Default:
.01]

Note: written value = (nominal value - offset) / scale.

offset_x, offset_y, offset_z
Offset to be subtracted from the X, Y and Z nominal values, respectively, before the
value is scaled. The special value auto can be specified, which causes the writer to set
the offset to the minimum value of the dimension. [Default: 0]

Note: written value = (nominal value - offset) / scale.

filesource_id
The file source id number to use for this file (a value between 0 and 65535 - 0 implies
“unassigned”) [Default: 0]

7.4. Writers 165

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

discard_high_return_numbers
If true, discard all points with a return number greater than the maximum supported by
the point format (5 for formats 0-5, 15 for formats 6-10). [Default: false]

extra_dims
Extra dimensions to be written as part of each point beyond those specified by the LAS
point format. The format of the option is <dimension_name>=<type> [, ...]. Any
valid PDAL type (page 373) can be specified.

The special value all can be used in place of a dimension/type list to request that all
dimensions that can’t be stored in the predefined LAS point record get added as extra
data at the end of each point record.

PDAL writes an extra bytes VLR (User ID: LASF_Spec, Record ID: 4) when extra dims
are written. The VLR describes the extra dimensions specified by this option. Note that
reading of this VLR is only specified for LAS version 1.4, though some systems will
honor it for earlier file formats. The LAS reader (page 89) requires the option use_eb_vlr
in order to read the extra bytes VLR for files written with 1.1 - 1.3 LAS format.

Setting –verbose=Info will provide output on the names, types and order of dimensions
being written as part of the LAS extra bytes.

pdal_metadata
Write two VLRs containing JSON (http://www.json.org/) output with both the Metadata
(page 551) and Pipeline (page 55) serialization. [Default: false]

vlrs
Add VLRS specified as json. See VLRs (page 162) above for details.

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

166 Chapter 7. Drivers

http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.12 writers.matlab

The Matlab Writer supports writing Matlab .mat files.

The produced files has a single variable, PDAL, an array struct.

Note: The Matlab writer requires the Mat-File API from MathWorks, and it must be explicitly
enabled at compile time with the BUILD_PLUGIN_MATLAB=ON variable

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
(continues on next page)

7.4. Writers 167

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"writers.matlab",
"output_dims":"X,Y,Z,Intensity",
"filename":"outputfile.mat"

}
]

Options

filename
Output file name [Required]

output_dims
A comma-separated list of dimensions to include in the output file. May also be specified
as an array of strings. [Default: all available dimensions]

struct
Array structure name to read [Default: “PDAL”]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.13 writers.nitf

The NITF (http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format) format is a
US Department of Defense format for the transmission of imagery. It supports various formats
inside a generic wrapper.

Note: LAS inside of NITF is widely supported by software that uses NITF for point cloud
storage, and LAZ is supported by some softwares. No other content type beyond those two is
widely supported as of January of 2016.

168 Chapter 7. Drivers

http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

Example One

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.nitf",
"compression":"laszip",
"idatim":"20160102220000",
"forward":"all",
"acftb":"SENSOR_ID:LIDAR,SENSOR_ID_TYPE:LILN",
"filename":"outputfile.ntf"

}
]

Example Two

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.nitf",
"compression":"laszip",
"idatim":"20160102220000",
"forward":"all",
"acftb":"SENSOR_ID:LIDAR,SENSOR_ID_TYPE:LILN",
"aimidb":"ACQUISITION_DATE:20160102235900",

(continues on next page)

7.4. Writers 169

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"outputfile.ntf"

}
]

Options

filename
NITF file to write. The writer will accept a filename containing a single placeholder
character (‘#’). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 327), filters.chipper (page 323) or filters.divider (page 325).

clevel
File complexity level (2 characters) [Default: 03]

stype
Standard type (4 characters) [Default: BF01]

ostaid
Originating station ID (10 characters) [Default: PDAL]

ftitle
File title (80 characters) [Default: <spaces>]

fsclas
File security classification (‘T’, ‘S’, ‘C’, ‘R’ or ‘U’) [Default: U]

oname
Originator name (24 characters) [Default: <spaces>]

ophone
Originator phone (18 characters) [Default: <spaces>]

fsctlh
File control and handling (2 characters) [Default: <spaces>]

fsclsy
File classification system (2 characters) [Default: <spaces>]

idatim
Image date and time (format: ‘CCYYMMDDhhmmss’). Required. [Default:
AIMIDB.ACQUISITION_DATE if set or <spaces>]

iid2
Image identifier 2 (80 characters) [Default: <spaces>]

170 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

fscltx
File classification text (43 characters) [Default: <spaces>]

aimidb
Comma separated list of name/value pairs to complete the AIMIDB (Additional Image
ID) TRE record (format name:value). Required: ACQUISITION_DATE, will default to
IDATIM value. [Default: NITF defaults]

acftb
Comma separated list of name/value pairs to complete the ACFTB (Aircraft Information)
TRE record (format name:value). Required: SENSOR_ID, SENSOR_ID_TYPE
[Default: NITF defaults]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.14 writers.null

The null writer discards its input. No point output is produced when using a null writer.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.4. Writers 171

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"filters.hexbin"
},
{

"type":"writers.null"
}

]

When used with an option that forces metadata output, like –pipeline-serialization, this pipeline
will create a hex boundary for the input file, but no output point data file will be produced.

Options

The null writer discards all passed options.

7.4.15 writers.ogr

The OGR Writer will create files of various vector formats
(https://gdal.org/drivers/vector/index.html) as supported by the OGR library. PDAL points are
generally stored as point geometries in the output format, though PDAL will create multipoint
geometries instead if the multicount (page 173) option is set to a value greater than 1. Points
can be written with a additional measure value (POINTZM) if measure_dim (page 173)
specifies a valid PDAL dimension, and dimensions can be set as feature attributes using the
attr_dims (page 173) option.

By default, the OGR writer will create ESRI shapefiles. The particular OGR driver can be
specified with the ogrdriver option.

172 Chapter 7. Drivers

https://gdal.org/drivers/vector/index.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"inputfile.las",
{

"type": "writers.ogr",
"filename": "outfile.geojson",
"measure_dim": "Intensity",
"attr_dims": "Classification"

}
]

Options

filename
Output file to write. The writer will accept a filename containing a single placeholder
character (#). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of multiple input files, or
using filters.splitter (page 327), filters.chipper (page 323) or filters.divider (page 325).

The driver will use the OGR GeoJSON driver if the output filename extension is
.geojson, and the ESRI Shapefile driver if the output filename extension is .shp. If
neither extension is recognized, the filename is taken to represent a directory in which
ESRI Shapefiles are written. The driver can be explicitly specified by using the ogrdriver
(page 173) option.

multicount
If 1, point features will be written. If greater than 1, specifies the number of points to
group into a feature with a multipoint geometry. Not all OGR drivers support multipoint
geometries. [Default: 1]

measure_dim
If specified, points will be written with an extra data field, the dimension of which is
specified by this option. Not all output formats support measure data. [Default: None]

attr_dims
List of dimensions to write as feature attributes. Separate multiple values with , or
repeat the option. Use all to write all dimensions. X, Y, Z, and any measure_dim
(page 173) are never written as attributes. This option is incompatible with the
multicount (page 173) option. [Default: None]

ogrdriver
The OGR driver to use for output. This option overrides any inference made about output
drivers from filename (page 173).

7.4. Writers 173

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

ogr_options
List of OGR driver-specific layer creation options, formatted as an OPTION=VALUE
string. Separate multiple values with , or repeat the option. [Default: None]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.16 writers.pcd

The PCD Writer supports writing to Point Cloud Data (PCD)
(https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html) formatted files, which are
used by the Point Cloud Library (PCL) (http://pointclouds.org).

By default, compression is not enabled, and the PCD writer will output ASCII formatted data.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Note: X, Y, and Z dimensions will be written as single-precision floats by default to be
compatible with most of the existing PCL point types. These dimensions can be forced to
double-precision using the order option, but the PCL code reading this data must be capable of
reading double-precision fields (i.e., it is not the responsibility of PDAL to ensure this
compatibility).

Note: When working with large coordinate values it is recommended that users first translate
the coordinate values using filters.transformation (page 282) to avoid loss of precision when

174 Chapter 7. Drivers

https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html
http://pointclouds.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

writing single-precision XYZ data.

Example

[
{

"type":"readers.pcd",
"filename":"inputfile.pcd"

},
{

"type":"writers.pcd",
"filename":"outputfile.pcd"

}
]

Options

filename
PCD file to write [Required]

compression
Level of PCD compression to use (ascii, binary, compressed) [Default: “ascii”]

precision
Decimal Precision for output of values. This can be overridden for individual dimensions
using the order option. [Default: 2]

order
Comma-separated list of dimension names in the desired output order. For example
“X,Y,Z,Red,Green,Blue”. Dimension names can optionally be followed by a PDAL type
(e.g., Unsigned32) and dimension-specific precision (used only with “ascii”
compression). Ex: “X=Float:2, Y=Float:2, Z=Float:3, Intensity=Unsigned32” If no
precision is specified the value provided with the precision (page 175) option is used.
The default dimension type is double precision float. [Default: none]

keep_unspecified
If true, writes all dimensions. Dimensions specified with the order (page 175) option
precede those not specified. [Default: true]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.4. Writers 175

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.17 writers.pgpointcloud

The PostgreSQL Pointcloud Writer allows you to write to PostgreSQL database that have the
PostgreSQL Pointcloud (http://github.com/pramsey/pointcloud) extension enabled. The
Pointcloud extension stores point cloud data in tables that contain rows of patches. Each patch
in turn contains a large number of spatially nearby points.

While you can theoretically store the contents of a whole file of points in a single patch, it is
more practical to store a table full of smaller patches, where the patches are under the
PostgreSQL page size (8kb). For most LIDAR data, this practically means a patch size of
between 400 and 600 points.

In order to create patches of the right size, the Pointcloud writer should be preceded in the
pipeline file by filters.chipper (page 323).

The pgpointcloud format does not support WKT spatial reference specifications. A subset of
spatial references can be stored by using the ‘srid’ option, which allows storage of an EPSG
code (http://www.epsg.org) that covers many common spatial references. PDAL makes no
attempt to reproject data to your specified srid. Use filters.reprojection (page 280) for this
purpose.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

[
{

"type":"readers.las",
"filename":"inputfile.las",
"spatialreference":"EPSG:26916"

},
{

"type":"filters.chipper",
"capacity":400

(continues on next page)

176 Chapter 7. Drivers

http://github.com/pramsey/pointcloud
http://www.epsg.org
http://www.epsg.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
{

"type":"writers.pgpointcloud",
"connection":"host='localhost' dbname='lidar' user='pramsey'",
"table":"example",
"compression":"dimensional",
"srid":"26916"

}
]

Options

connection
PostgreSQL connection string. In the form “host=hostname dbname=database
user=username password=pw port=5432” [Required]

table
Database table to write to. [Required]

schema
Database schema to write to. [Default: “public”]

column
Table column to put patches into. [Default: “pa”]

compression
Patch compression type to use. [Default: “”dimensional””]

• none applies no compression

• dimensional applies dynamic compression to each dimension separately

• lazperf applies a “laz” compression (using the laz-perf
(https://github.com/hobu/laz-perf) library in PostgreSQL Pointcloud)

overwrite
To drop the table before writing set to ‘true’. To append to the table set to ‘false’.
[Default: false]

srid
Spatial reference ID (relative to the spatial_ref_sys table in PostGIS) to store with the
point cloud schema. [Default: 4326]

pcid
An optional existing PCID to use for the point cloud schema. If specified, the schema
must be present. If not specified, a match will still be looked for, or a new schema will be
inserted. [Default: 0]

7.4. Writers 177

https://github.com/hobu/laz-perf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pre_sql
SQL to execute before running the translation. If the value references a file, the file is
read and any SQL inside is executed. Otherwise the value is executed as SQL itself.
[Optional]

post_sql
SQL to execute after running the translation. If the value references a file, the file is read
and any SQL inside is executed. Otherwise the value is executed as SQL itself.
[Optional]

scale_x, scale_y, scale_z / offset_x, offset_y, offset_z
If ANY of these options are specified the X, Y and Z dimensions are adjusted by
subtracting the offset and then dividing the values by the specified scaling factor before
being written as 32-bit integers (as opposed to double precision values). If any of these
options is specified, unspecified scale_<x,y,x> options are given the value of 1.0 and
unspecified offset_<x,y,z> are given the value of 0.0.

output_dims
If specified, limits the dimensions written for each point. Dimensions are listed by name
and separated by commas.

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.18 writers.ply

The ply writer writes the polygon file format (http://paulbourke.net/dataformats/ply/), a
common file format for storing three dimensional models. The writer emits points as PLY
vertices. The writer can also emit a mesh as a set of faces. filters.greedyprojection (page 344)
and filters.poisson (page 346) create a mesh suitable for output as faces.

Default Embedded Stage

This stage is enabled by default

178 Chapter 7. Drivers

http://paulbourke.net/dataformats/ply/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
{

"type":"readers.pcd",
"filename":"inputfile.pcd"

},
{

"type":"writers.ply",
"storage_mode":"little endian",
"filename":"outputfile.ply"

}
]

Options

filename
ply file to write [Required]

storage_mode
Type of ply file to write. Valid values are ‘ascii’, ‘little endian’, ‘big endian’. [Default:
“ascii”]

dims
List of dimensions (and Types (page 373)) in the format <dimension_name>[=<type>]
[,...] to write as output. (e.g., “Y=int32_t, X,Red=char”) [Default: All dimensions
with stored types]

faces
Write a mesh as faces in addition to writing points as vertices. [Default: false]

sized_types
PLY has variously been written with explicitly sized type strings (‘int8’, ‘float32”,
‘uint32’, etc.) and implied sized type strings (‘char’, ‘float’, ‘int’, etc.). If true, explicitly
sized type strings are used. If false, implicitly sized type strings are used. [Default: true]

precision
If specified, the number of digits to the right of the decimal place using f-style
formatting. Only permitted when ‘storage_mode’ is ‘ascii’. See the printf
(https://en.cppreference.com/w/cpp/io/c/fprintf) reference for more information.
[Default: g-style formatting (variable precision)]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

7.4. Writers 179

https://en.cppreference.com/w/cpp/io/c/fprintf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.19 writers.raster

The Raster Writer writes an existing raster to a file. Output is produced using GDAL
(http://gdal.org) and can use any driver that supports creation of rasters
(http://www.gdal.org/formats_list.html). A data_type can be specified for the raster (double,
float, int32, etc.). If no data type is specified, the data type with the largest range supported by
the driver is used.

Cells that have no value are given a value specified by the nodata option.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Basic Example

This pipeline reads the file autzen_trim.las, triangulates the data, creates a raster based on the Z
dimension as determined by interpolation of the location and values of ‘Z’ of the vertices of a
containing triangle, if any exists. The resulting raster is written to “outputfile.tif”.

[
"pdal/test/data/las/autzen_trim.las",
{

"type": "filters.delaunay"
}
{

"type": "filters.faceraster",
"resolution": 1

}
(continues on next page)

180 Chapter 7. Drivers

http://gdal.org
http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type": "writers.raster"
"filename":"outputfile.tif"

}
]

Options

filename
Name of output file. [Required]

gdaldriver
GDAL code of the GDAL driver (http://www.gdal.org/formats_list.html) to use to write
the output. [Default: “GTiff”]

gdalopts
A list of key/value options to pass directly to the GDAL driver. The format is
name=value,name=value,. . . The option may be specified any number of times.

Note: The INTERLEAVE GDAL driver option is not supported. writers.gdal always
uses BAND interleaving.

rasters
A comma-separated list of raster names to be written as bands of the raster. All rasters
must have the same limits (origin/width/height). Rasters following the first that don’t
have the same limits will be dropped. If no raster names are provided, only the first raster
found will be placed into a single band for output.

data_type
The data type (page 373) to use for the output raster. Many GDAL drivers only support a
limited set of output data types. [Default: depends on the driver]

nodata
The value to use for a raster cell if the raster contains no data in a cell. Note that the
nodata written to the output may be different from that of the raster being written.
[Default: depends on the data_type. -9999 for double, float, int and short, 9999 for
unsigned int and unsigned short, 255 for unsigned char and -128 for char]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.4. Writers 181

http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

7.4.20 writers.sbet

The SBET writer writes files in the SBET format, used for exchange data from inertial
measurement units (IMUs).

Default Embedded Stage

This stage is enabled by default

Example

[
"input.sbet",
"output.sbet"

]

Options

filename
File to write. [Required]

angles_are_degrees
Convert all angular values from degrees to radians before write. [Default: true]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

182 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.21 writers.text

The text writer writes out to a text file. This is useful for debugging or getting smaller files
into an easily parseable format. The text writer supports both GeoJSON (http://geojson.org)
and CSV (http://en.wikipedia.org/wiki/Comma-separated_values) output.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.las",
"filename":"inputfile.las"

},
{

"type":"writers.text",
"format":"geojson",
"order":"X,Y,Z",
"keep_unspecified":"false",
"filename":"outputfile.txt"

}
]

Options

filename
File to write to, or “STDOUT” to write to standard out [Required]

format
Output format to use. One of geojson or csv. [Default: “csv”]

precision
Decimal Precision for output of values. This can be overridden for individual dimensions
using the order option. [Default: 3]

7.4. Writers 183

http://geojson.org
http://en.wikipedia.org/wiki/Comma-separated_values

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

order
Comma-separated list of dimension names in the desired output order. For example
“X,Y,Z,Red,Green,Blue”. Dimension names can optionally be followed with a colon (‘:’)
and an integer to indicate the precision to use for output. Ex: “X:3, Y:5,Z:0” If no
precision is specified the value provided with the precision (page 183) option is used.
[Default: none]

keep_unspecified
If true, writes all dimensions. Dimensions specified with the order (page 184) option
precede those not specified. [Default: true]

jscallback
When producing GeoJSON, the callback allows you to wrap the data in a function, so the
output can be evaluated in a <script> tag.

quote_header
When producing CSV, should the column header named by quoted? [Default: true]

write_header
Whether a header should be written. [Default: true]

newline
When producing CSV, what newline character should be used? (For Windows, \\r\\n is
common.) [Default: “\n”]

delimiter
When producing CSV, what character to use as a delimiter? [Default: “,”]

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

184 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.4.22 writers.tiledb

Implements TileDB (https://tiledb.io) 2.3.0+ reads from an array.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

[
{

"type":"readers.las",
"array_name":"input.las"

},
{

"type":"filters.stats"
},
{

"type":"writers.tiledb",
"array_name":"output_array"

}
]

Options

array_name
TileDB (https://tiledb.io) array to write to. Synonymous with filename. [Required]

config_file
TileDB (https://tiledb.io) configuration file. [Optional]

data_tile_capacity
Number of points per tile. Not used when append=true. [Default: 100,000]

cell_order
The layout to use for TileDB cells. May be auto, row-major, col-major, or hilbert. Not
used when append=true. [Default: auto]

7.4. Writers 185

https://tiledb.io
https://tiledb.io
https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

tile_order
The layout to use for TileDB tiles. May be row-major or col-major. Not used when
append=true. [Default: row-major]

x_tile_size
Tile size (x). Floating point value used for determining on-disk data order. Not used
when append=true. [Optional]

y_tile_size
Tile size (y). Floating point value used for determining on-disk data order. Not used
when append=true. [Optional]

z_tile_size
Tile size (z). Floating point value used for determining on-disk data order. Not used
when append=true. [Optional]

time_tile_size
Tile size (time). Not used when append=true. [Optional]

x_domain_st
Domain minimum for x. Not used when append=true. [Optional]

x_domain_end
Domain maximum for x. Not used when append=true. [Optional]

y_domain_st
Domain minimum for y. Not used when append=true. [Optional]

y_domain_end
Domain maximum for y. Not used when append=true. [Optional]

z_domain_st
Domain minimum for z. Not used when append=true. [Optional]

z_domain_end
Domain maximum for z. Not used when append=true. [Optional]

time_domain_st
Domain minimum for GpsTime. Not used when append=true. [Optional]

time_domain_end
Domain maximum for GpsTime. Not used when append=true. [Optional]

use_time_dim
Use GpsTime coordinate data as an array dimension instead of an array attribute. Not
used when append=true. [Default: false]

time_first
Put the GpsTime dimension first instead of last. Only used when use_time_dim=true.
Not used when append=true. [Default: false]

186 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

combine_bit_fields
Store all sub-byte fields together in an attribute named BitFields. Not used when
append=true. [Default: true]

chunk_size
Point cache size for chunked writes. [Default: 1,000,000]

append
Instead of creating a new array, append to an existing array that has the dimensions stored
as a TileDB dimension or TileDB attribute. [Default: false]

stats
Dump query stats to stdout. [Default: false]

filters
JSON array or object of compression filters for either dimenions or attributes of the form
{dimension/attribute name : {“compression”: name, compression_options: value, . . . }}.
Not used when append=true. [Optional]

filter_profile
Profile of compression filters to use for dimensions and attributes not provided in filters.
Options include balanced, aggressive, and none. Not used when append=true. [Default:
balanced]

scale_x, scale_y, scale_z
Scale factor used for the float-scale filter for the X, Y, and Z dimensions, respectively,
when using the balanced or aggressive filter profile. Not used when append=true.
[Default: 0.01]

Note: written value = (nominal value - offset) / scale.

offset_x, offset_y, offset_z
Offset used for the float-scale filter for the X, Y and Z dimenisons, respectively, when
using the balanced or aggressive filter profile. Not used when append=true. [Default:
0.0]

Note: written value = (nominal value - offset) / scale.

compression
The default TileDB compression filter to use. Only used if the dimension or attribute
name is not included in filters. Not used when append=true. [Default: none]

compression_level
The TileDB compression level to use for the default compression. Option is ignored if set
to -1. Not used when append=true. [Default: -1]

timestamp
Sets the TileDB timestamp for this write. [Optional]

allow_dups
Allow duplicate points. [Default: true]

7.4. Writers 187

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a writer. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the writer was run. [Default:
auto]

TileDB provides default filter profiles. The filters can be over-written by the filters option. If a
TileDB attribute is not set by the filter profile or the filter option, the compression filter set by
the compression option is used.

Filters set by the balanced (default) filter profile (the delta filter is skipped if using TileDB
version less than 2.16.0):

• X

1. Float-scale filter (factor=`scale_x`, offset=`offset_x`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit shuffle filter

4. Zstd filter (level=7)

• Y

1. Float-scale filter (factor=`scale_y`, offset=`offset_y`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit shuffle filter

4. Zstd filter (level=7)

• Z

1. Float-scale filter (factor=`scale_z`, offset=`offset_z`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit shuffle filter

4. Zstd filter (level=7)

• GPSTime

1. Delta filter (reinterpret_datatype=”INT64”)

2. Bit width reduction filter

3. Zstd filter (level=7)

188 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Intensity

1. Delta filter

2. Zstd filter (level=5)

• BitFields

1. Zstd filter (level=5)

• ReturnNumber

1. Zstd filter (level=5)

• NumberOfReturns

1. Zstd filter (level=5)

• ScanDirectionFlag

1. Zstd filter (level=5)

• EdgeOfFlightLine

1. Zstd filter (level=5)

• Classification

1. Zstd filter (level=5)

• UserData

1. Zstd filter (level=5)

• PointSourceId

1. Zstd filter (level=5)

• Red

1. Delta filter

2. Bit width reduction filter

3. Zstd filter (level=7)

• Green

1. Delta filter

2. Bit width reduction filter

3. Zstd filter (level=7)

• Blue

1. Delta filter

2. Bit width reduction filter

7.4. Writers 189

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3. Zstd filter (level=7)

Filters set by the aggressive filter profile (the delta filter is skipped if using TileDB version less
than 2.16.0):

• X

1. Float-scale filter (factor=`scale_x`, offset=`offset_x`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit width reduction filter

4. BZIP2 filter (level=9)

• Y

1. Float-scale filter (factor=`scale_y`, offset=`offset_y`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit width reduction filter

4. BZIP2 filter (level=9)

• Z

1. Float-scale filter (factor=`scale_z`, offset=`offset_z`, scale_float_bytewidth=4)

2. Delta filter (reinterpret_datatype=`INT32`)

3. Bit width reduction filter

4. BZIP2 filter (level=9)

• GPSTime

1. Delta filter (reinterpret_datatype=”INT64”)

2. Bit width reduction filter

3. BZIP2 filter (level=9)

• Intensity

1. Delta filter

2. Bit width reduction

3. BZIP2 filter (level=5)

• BitFields

1. BZIP2 filter (level=9)

• ReturnNumber

1. BZIP2 filter (level=9)

190 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• NumberOfReturns

1. BZIP2 filter (level=9)

• ScanDirectionFlag

1. BZIP2 filter (level=9)

• EdgeOfFlightLine

1. BZIP2 filter (level=9)

• Classification

1. BZIP2 filter (level=9)

• UserData

1. BZIP2 filter (level=9)

• PointSourceId

1. BZIP2 filter (level=9)

• Red

1. Delta filter

2. Bit width reduction filter

3. BZIP2 filter (level=9)

• Green

1. Delta filter

2. Bit width reduction filter

3. BZIP2 filter (level=9)

• Blue

1. Delta filter

2. Bit width reduction filter

3. BZIP2 filter (level=9)

The filter profile none does not set any default filters.

writers.arrow (page 140)
write Apache Arrow Feather- or Parquet-formatted files

writers.bpf (page 141)
write BPF version 3 files. BPF is an NGA specification for point cloud data.

writers.copc (page 144)
COPC, or Cloud Optimized Point Cloud, is an LAZ 1.4 file stored as a clustered octree.

7.4. Writers 191

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

writers.draco (page 147)
Write a buffer in Google Draco format

writers.ept_addon (page 149)
Append additional dimensions to Entwine resources.

writers.e57 (page 152)
Write data in the E57 format.

writers.fbi (page 154)
Write TerraSolid FBI format

writers.fbx (page 155)
Write mesh output in the Adobe FBX format.

writers.gdal (page 156)
Create a raster from a point cloud using an interpolation algorithm.

writers.gltf (page 160)
Write mesh data in GLTF format. Point clouds without meshes cannot be written.

writers.las (page 162)
Write ASPRS LAS and LAZ versions 1.0 - 1.4 formatted data.

writers.matlab (page 167)
Write MATLAB .mat files. The output has a single array struct.

writers.nitf (page 168)
Write LAS and LAZ point cloud data, wrapped in a NITF 2.1 file.

writers.null (page 171)
Provides a sink for points in a pipeline. It’s the same as sending pipeline output to
/dev/null.

writers.ogr (page 172)
Write a point cloud as a set of OGR points/multipoints

writers.pcd (page 174)
Write PCD-formatted files in the ASCII, binary, or compressed format.

writers.pgpointcloud (page 176)
Write to a PostgreSQL database that has the PostgreSQL Pointcloud extension enabled.

writers.ply (page 178)
Write points as PLY vertices. Can also emit a mesh as a set of faces.

writers.raster (page 180)
Writes rasters using GDAL. Rasters must be created using a PDAL filter.

writers.sbet (page 182)
Write data in the SBET format.

192 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

writers.text (page 183)
Write points in a text file. GeoJSON and CSV formats are supported.

writers.tiledb (page 185)
Write points into a TileDB database.

7.5 Filters

Filters operate on data as inline operations. They can remove, modify, reorganize, and add
points to the data stream as it goes by. Some filters can only operate on dimensions they
understand (consider filters.reprojection (page 280) doing geographic reprojection on XYZ
coordinates), while others do not interrogate the point data at all and simply reorganize or split
data.

7.5.1 Create

PDAL filters commonly create new dimensions (e.g., HeightAboveGround) or alter existing
ones (e.g., Classification). These filters will not invalidate an existing KD-tree.

Note: We treat those filters that alter XYZ coordinates separately.

Note: When creating new dimensions, be mindful of the writer you are using and whether or
not the custom dimension can be written to disk if that is the desired behavior.

Classification

Ground/Unclassified

filters.csf

The Cloth Simulation Filter (CSF) classifies ground points based on the approach outlined in
[Zhang2016].

Default Embedded Stage

This stage is enabled by default

7.5. Filters 193

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

The sample pipeline below uses CSF to segment ground and non-ground returns, using default
options, and writing only the ground returns to the output file.

[
"input.las",
{

"type":"filters.csf"
},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
"output.laz"

]

Options

resolution
Cloth resolution. [Default: 1.0]

ignore
A range (page 320) of values of a dimension to ignore.

returns
Return types to include in output. Valid values are “first”, “last”, “intermediate” and
“only”. [Default: “last, only”]

threshold
Classification threshold. [Default: 0.5]

hdiff
Height difference threshold. [Default: 0.3]

smooth
Perform slope post-processing? [Default: true]

step
Time step. [Default: 0.65]

rigidness
Rigidness. [Default: 3]

iterations
Maximum number of iterations. [Default: 500]

194 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.pmf

The Progressive Morphological Filter (PMF) is a method of segmenting ground and
non-ground returns. This filter is an implementation of the method described in [Zhang2003].

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.pmf"
},
"output.las"

]

Notes

• slope (page 197) controls the height threshold at each iteration. A slope of 1.0 represents
a 1:1 or 45º.

• initial_distance (page 196) is _intended_ to be set to account for z noise, so for a flat
surface if you have an uncertainty of around 15 cm, you set initial_distance (page 196)
large enough to not exclude these points from the ground.

• For a given iteration, the height threshold is determined by multiplying slope by cell_size
(page 196) by the difference in window size between the current and last iteration, plus

7.5. Filters 195

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

the initial_distance (page 196). This height threshold is constant across all cells and is
maxed out at the max_distance (page 197) value. If the difference in elevation between a
point and its “opened” value (from the morphological operator) exceeds the height
threshold, it is treated as non-ground. So, bigger slope leads to bigger height thresholds,
and these grow with each iteration (not to exceed the max). With flat terrain, keep this
low, the thresholds are small, and stuff is more aggressively dumped into non-ground
class. In rugged terrain, open things up a little, but then you can start missing buildings,
veg, etc.

• Very large max_window_size (page 197) values will result in a lot of potentially extra
iteration. This parameter can have a strongly negative impact on computation
performance.

• exponential (page 196) is used to control the rate of growth of morphological window
sizes toward max_window_size (page 197). Linear growth preserves gradually changing
topographic features well, but demands considerable compute time. The default behavior
is to grow the window sizes exponentially, thus reducing the number of iterations.

• This filter will mark all returns deemed to be ground returns with a classification value of
2 (per the LAS specification). To extract only these returns, users can add a range filter
(page 318) to the pipeline.

{
"type":"filters.range",
"limits":"Classification[2:2]"

}

Note: [Zhang2003] describes the consequences and relationships of the parameters in more
detail and is the canonical resource on the topic.

Options

cell_size
Cell Size. [Default: 1]

exponential
Use exponential growth for window sizes? [Default: true]

ignore
Range of values to ignore. [Optional]

initial_distance
Initial distance. [Default: 0.15]

returns

196 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Comma-separated list of return types into which data should be segmented. Valid groups
are “last”, “first”, “intermediate” and “only”. [Default: “last, only”]

max_distance
Maximum distance. [Default: 2.5]

max_window_size
Maximum window size. [Default: 33]

slope
Slope. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.skewnessbalancing

Skewness Balancing classifies ground points based on the approach outlined in [Bartels2010].

Default Embedded Stage

This stage is enabled by default

Note: For Skewness Balancing to work well, the scene being processed needs to be quite flat,
otherwise many above ground features will begin to be included in the ground surface.

Example

The sample pipeline below uses the Skewness Balancing filter to segment ground and
non-ground returns, using default options, and writing only the ground returns to the output file.

[
"input.las",

(continues on next page)

7.5. Filters 197

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"filters.skewnessbalancing"
},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
"output.laz"

]

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Note: The Skewness Balancing method is touted as being threshold-free. We may still in the
future add convenience parameters that are common to other ground segmentation filters, such
as returns or ignore to limit the points under consideration for filtering.

filters.smrf

The Simple Morphological Filter (SMRF) classifies ground points based on the approach
outlined in [Pingel2013].

Default Embedded Stage

This stage is enabled by default

198 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #1

The sample pipeline below uses the SMRF filter to segment ground and non-ground returns,
using default options, and writing only the ground returns to the output file.

[
"input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
"output.laz"

]

Example #2

A more complete example, specifying some options. These match the optimized parameters for
Sample 1 given in Table 3 of [Pingel2013].

[
"input.las",
{

"type":"filters.smrf",
"scalar":1.2,
"slope":0.2,
"threshold":0.45,
"window":16.0

},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
"output.laz"

]

7.5. Filters 199

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

cell
Cell size. [Default: 1.0]

classbits
Selectively ignore points marked as “synthetic”, “keypoint”, or “withheld”. [Default:
empty string, use all points]

cut
Cut net size (cut=0 skips the net cutting step). [Default: 0.0]

dir
Optional output directory for debugging intermediate rasters.

ignore
A range (page 320) of values of a dimension to ignore.

returns
Return types to include in output. Valid values are “first”, “last”, “intermediate” and
“only”. [Default: “last, only”]

scalar
Elevation scalar. [Default: 1.25]

slope
Slope (rise over run). [Default: 0.15]

threshold
Elevation threshold. [Default: 0.5]

window
Max window size. [Default: 18.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

200 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.sparsesurface

The Sparse Surface filter segments input points into two classes: ground or low point. It does
this by adding ground points in ascending elevation order, and masking all neighbor points
within a specified radius as low points. This process creates a sparse sampling of the ground
estimate akin to the Poisson disk sampling available in filters.sample (page 301) and marks all
other points as low noise. It is expected that the input point cloud will either only include
points labeled as ground or the where option will be employed to limit points to those marked
as ground.

Default Embedded Stage

This stage is enabled by default

Example #1

The sample pipeline below uses the SMRF filter to segment ground and non-ground returns,
uses the expression filter to retain only ground returns, and then the sparse surface filter to
segment ground and low noise.

[
"input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.expression",
"expression":"Classification==2"

},
{

"type":"filters.sparsesurface"
},
"output.laz"

]

7.5. Filters 201

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #2

This sample pipeline is nearly identical to the previous one, but retains all points (including
non-ground) while still only operating on ground returns when computing the sparse surface. It
also sets the only option unique to the sparse sample filter, which is the sampling radius–no two
ground points will be closer than 3.0 meters (horizontally).

[
"input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.sparsesurface",
"radius":3.0,
"where":"Classification==2"

},
"output.laz"

]

Options

radius
Mask neighbor points as low noise. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

202 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.trajectory

The trajectory filter computes an estimate the the sensor location based on the position of
multiple returns and the sensor scan angle. It is primarily useful for LAS input as it requires
scan angle and return counts in order to work.

The method is described in detail here. It extends the method of [GM19].

Note: This filter creates a new dataset describing the trajectory of the sensor, replacing the
input dataset.

Examples

[
"input.las",
{

"type": "filters.trajectory"
},
"trajectory.las"

]

Options

dtr
Multi-return sampling interval in seconds. [Default: .001]

dst
Single-return sampling interval in seconds. [Default: .001]

minsep
Minimum separation of returns considered in meters. [Default: .01]

tblock
Block size for cublic spline in seconds. [Default: 1.0]

tout
Output data interval in seconds. [Default: .01]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.5. Filters 203

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.csf (page 193)
Label ground/non-ground returns using [Zhang2016].

filters.pmf (page 195)
Label ground/non-ground returns using [Zhang2003].

filters.skewnessbalancing (page 197)
Label ground/non-ground returns using [Bartels2010].

filters.smrf (page 198)
Label ground/non-ground returns using [Pingel2013].

filters.sparsesurface (page 201)
Sparsify ground returns and label neighbors as low noise.

filters.trajectory (page 203)
Label ground/non-ground returns using estimate flight trajectory given multi-return point
cloud data with timing information.

Noise

filters.elm

The Extended Local Minimum (ELM) filter marks low points as noise. This filter is an
implementation of the method described in [Chen2012].

ELM begins by rasterizing the input point cloud data at the given cell (page 206) size. Within
each cell, the lowest point is considered noise if the next lowest point is a given threshold above
the current point. If it is marked as noise, the difference between the next two points is also
considered, marking points as noise if needed, and continuing until another neighbor is found
to be within the threshold. At this point, iteration for the current cell stops, and the next cell is
considered.

Default Embedded Stage

This stage is enabled by default

204 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #1

The following PDAL pipeline applies the ELM filter, using a cell (page 206) size of 20 and
applying the classification (page 206) code of 18 to those points determined to be noise.

{
"pipeline":[
"input.las",
{
"type":"filters.elm",
"cell":20.0,
"class":18

},
"output.las"

]
}

Example #2

This variation of the pipeline begins by assigning a value of 0 to all classifications, thus
resetting any existing classifications. It then proceeds to compute ELM with a threshold
(page 206) value of 2.0, and finishes by extracting all returns that are not marked as noise.

[
"input.las",
{

"type":"filters.assign",
"assignment":"Classification[:]=0"

},
{

"type":"filters.elm",
"threshold":2.0

},
{

"type":"filters.range",
"limits":"Classification![7:7]"

},
"output.las"

]

7.5. Filters 205

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

cell
Cell size. [Default: 10.0]

class
Classification value to apply to noise points. [Default: 7]

threshold
Threshold value to identify low noise points. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.outlier

The outlier filter provides two outlier filtering methods: radius and statistical. These two
approaches are discussed in further detail below.

It is worth noting that both filtering methods simply apply a classification value of 7 to the
noise points (per the LAS specification
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf)). To remove the
noise points altogether, users can add a range filter (page 318) to their pipeline, downstream
from the outlier filter.

Default Embedded Stage

This stage is enabled by default

{
"type":"filters.range",
"limits":"Classification![7:7]"

}

206 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Statistical Method

The default method for identifying outlier points is the statistical outlier method. This method
requires two passes through the input PointView, first to compute a threshold value based on
global statistics, and second to identify outliers using the computed threshold.

In the first pass, for each point 𝑝𝑖 in the input PointView, compute the mean distance 𝜇𝑖 to each
of the 𝑘 nearest neighbors (where 𝑘 is configurable and specified by mean_k (page 210)). Then,

𝜇 =
1

𝑁

𝑁∑︁
𝑖=1

𝜇𝑖

𝜎 =

⎯⎸⎸⎷ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝜇𝑖 − 𝜇)2

A global mean 𝜇 of these mean distances is then computed along with the standard deviation 𝜎.
From this, the threshold is computed as

𝑡 = 𝜇+𝑚𝜎

where 𝑚 is a user-defined multiplier specified by multiplier (page 210).

We now iterate over the pre-computed mean distances 𝜇𝑖 and compare to computed threshold
value. If 𝜇𝑖 is greater than the threshold, it is marked as an outlier.

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖 =

{︃
true, if 𝜇𝑖 >= 𝑡

false, otherwise

Before outlier removal, noise points can be found both above and below the scene.

After outlier removal, the noise points are removed.

See [Rusu2008] for more information.

Example

In this example, points are marked as outliers if the average distance to each of the 12 nearest
neighbors is below the computed threshold.

[
"input.las",
{

"type":"filters.outlier",
"method":"statistical",

(continues on next page)

7.5. Filters 207

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

208 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"mean_k":12,
"multiplier":2.2

},
"output.las"

]

Radius Method

For each point 𝑝𝑖 in the input PointView, this method counts the number of neighboring
points 𝑘𝑖 within radius 𝑟 (specified by radius (page 210)). If 𝑘𝑖 < 𝑘𝑚𝑖𝑛, where 𝑘𝑚𝑖𝑛 is the
minimum number of neighbors specified by min_k (page 209), it is marked as an outlier.

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖 =

{︃
true, if 𝑘𝑖 < 𝑘𝑚𝑖𝑛

false, otherwise

Example

The following example will mark points as outliers when there are fewer than four neighbors
within a radius of 1.0.

[
"input.las",
{

"type":"filters.outlier",
"method":"radius",
"radius":1.0,
"min_k":4

},
"output.las"

]

Options

class
The classification value to apply to outliers. [Default: 7]

method
The outlier removal method (either “statistical” or “radius”). [Default: “statistical”]

min_k
Minimum number of neighbors in radius (radius method only). [Default: 2]

7.5. Filters 209

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

radius
Radius (radius method only). [Default: 1.0]

mean_k
Mean number of neighbors (statistical method only). [Default: 8]

multiplier
Standard deviation threshold (statistical method only). [Default: 2.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.elm (page 204)
Marks low points as noise.

filters.outlier (page 206)
Label noise points using either a statistical or radius outlier detection.

Consensus

filters.neighborclassifier

The neighborclassifier filter allows you update the value of the classification for specific
points to a value determined by a K-nearest neighbors vote. For each point, the k (page 211)
nearest neighbors are queried and if more than half of them have the same value, the filter
updates the selected point accordingly

For example, if an automated classification procedure put/left erroneous vegetation points near
the edges of buildings which were largely classified correctly, you could try using this filter to
fix that problem.

Similiarly, some automated classification processes result in prediction for only a subset of the
original point cloud. This filter could be used to extrapolate those predictions to the original.

Default Embedded Stage

This stage is enabled by default

210 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 1

This pipeline updates the Classification of all points with classification 1 (unclassified) based
on the consensus (majority) of its nearest 10 neighbors.

[
"autzen_class.las",
{

"type" : "filters.neighborclassifier",
"domain" : "Classification[1:1]",
"k" : 10

},
"autzen_class_refined.las"

]

Example 2

This pipeline moves all the classifications from “pred.txt” to src.las. Any points in src.las that
are not in pred.txt will be assigned based on the closest point in pred.txt.

[
"src.las",
{

"type" : "filters.neighborclassifier",
"k" : 1,
"candidate" : "pred.txt"

},
"dest.las"

]

Options

candidate
A filename which points to the point cloud containing the points which will do the
voting. If not specified, defaults to the input of the filter.

domain
A range (page 320) which selects points to be processed by the filter. Can be specified
multiple times. Points satisfying any range will be processed

k
An integer which specifies the number of neighbors which vote on each selected point.

7.5. Filters 211

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.neighborclassifier (page 210)
Update pointwise classification using k-nearest neighbor consensus voting.

Height Above Ground

filters.hag_delaunay

The Height Above Ground Delaunay filter takes as input a point cloud with
Classification set to 2 for ground points. It creates a new dimension,
HeightAboveGround, that contains the normalized height values.

Note: We expect ground returns to have the classification value of 2 in keeping with the
ASPRS Standard LIDAR Point Classes
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf).

Ground points may be generated by filters.pmf (page 195) or filters.smrf (page 198), but you
can use any method you choose, as long as the ground returns are marked.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

The filter creates a delaunay triangulation of the count (page 214) ground points closest to the
non-ground point in question. If the non-ground point is within the triangulated area, the
assigned HeightAboveGround is the difference between its Z value and a ground height
interpolated from the three vertices of the containing triangle. If the non-ground point is
outside of the triangulated area, its HeightAboveGround is calculated as the difference
between its Z value and the Z value of the nearest ground point.

Choosing a value for count (page 214) is difficult, as placing the non-ground point in the
triangulated area depends on the layout of the nearby points. If, for example, all the ground
points near a non-ground point lay on one side of that non-ground point, finding a containing
triangle will fail.

212 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Default Embedded Stage

This stage is enabled by default

Example #1

Using the autzen dataset (here shown colored by elevation), which already has points classified
as ground

we execute the following pipeline

[
"autzen.laz",
{

"type":"filters.hag_delaunay"
},
{

"type":"writers.laz",
"filename":"autzen_hag_delaunay.laz",
"extra_dims":"HeightAboveGround=float32"

(continues on next page)

7.5. Filters 213

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
}

]

which is equivalent to the pdal translate command

$ pdal translate autzen.laz autzen_hag_delaunay.laz hag_delaunay \
--writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

Options

count
The number of ground neighbors to consider when determining the height above ground
for a non-ground point. [Default: 10]

allow_extrapolation
If false and a non-ground point lies outside of the bounding box of all ground points, its
HeightAboveGround is set to 0. If true and delaunay is set, the HeightAboveGround
is set to the difference between the heights of the non-ground point and nearest ground
point. [Default: false]

214 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.hag_dem

The Height Above Ground (HAG) Digital Elevation Model (DEM) filter loads a
GDAL-readable raster image specifying the DEM. The Z value of each point in the input is
compared against the value at the corresponding X,Y location in the DEM raster. It creates a
new dimension, HeightAboveGround, that contains the normalized height values.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example #1

Using the autzen dataset (here shown colored by elevation)

7.5. Filters 215

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

we generate a DEM based on the points already classified as ground

$ pdal translate autzen.laz autzen_dem.tif range \
--filters.range.limits="Classification[2:2]" \
--writers.gdal.output_type="idw" \
--writers.gdal.resolution=6 \
--writers.gdal.window_size=24

and execute the following pipeline

[
"autzen.laz",
{

"type":"filters.hag_dem",
"raster": "autzen_dem.tif"

},
{

"type":"writers.las",
"filename":"autzen_hag_dem.laz",
"extra_dims":"HeightAboveGround=float32"

}
]

which is equivalent to the pdal translate command

216 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

$ pdal translate autzen.laz autzen_hag_dem.laz hag_dem \
--filters.hag_dem.raster=autzen_dem.tif \
--writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

Options

raster
GDAL-readable raster to use for DEM.

band
GDAL Band number to read (count from 1). [Default: 1]

zero_ground
If true, set HAG of ground-classified points to 0 rather than comparing Z value to raster
DEM. [Default: true]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.5. Filters 217

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.hag_nn

The Height Above Ground Nearest Neighbor filter takes as input a point cloud with
Classification set to 2 for ground points. It creates a new dimension,
HeightAboveGround, that contains the normalized height values.

Note: We expect ground returns to have the classification value of 2 in keeping with the
ASPRS Standard LIDAR Point Classes
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf).

Ground points may be generated by filters.pmf (page 195) or filters.smrf (page 198), but you
can use any method you choose, as long as the ground returns are marked.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

The filter finds the count (page 221) ground points nearest the non-ground point under
consideration. It calculates an average ground height weighted by the distance of each ground
point from the non-ground point. The HeightAboveGround is the difference between the Z
value of the non-ground point and the interpolated ground height.

Default Embedded Stage

This stage is enabled by default

Example #1

Using the autzen dataset (here shown colored by elevation), which already has points classified
as ground

218 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

we execute the following pipeline

[
"autzen.laz",
{

"type":"filters.hag_nn"
},
{

"type":"writers.laz",
"filename":"autzen_hag_nn.laz",
"extra_dims":"HeightAboveGround=float32"

}
]

which is equivalent to the pdal translate command

$ pdal translate autzen.laz autzen_hag_nn.laz hag_nn \
--writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

7.5. Filters 219

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #2

In the previous example, we chose to write HeightAboveGround using the extra_dims
option of writers.las (page 162). If you’d instead like to overwrite your Z values, then follow
the height filter with filters.ferry (page 263) as shown

[
"autzen.laz",
{

"type":"filters.hag_nn"
},
{

"type":"filters.ferry",
"dimensions":"HeightAboveGround=>Z"

},
"autzen-height-as-Z.laz"

]

220 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #3

If you don’t yet have points classified as ground, start with filters.pmf (page 195) or filters.smrf
(page 198) to label ground returns, as shown

[
"autzen.laz",
{

"type":"filters.smrf"
},
{

"type":"filters.hag_nn"
},
{

"type":"filters.ferry",
"dimensions":"HeightAboveGround=>Z"

},
"autzen-height-as-Z-smrf.laz"

]

Options

count
The number of ground neighbors to consider when determining the height above ground
for a non-ground point. [Default: 1]

max_distance
Use only ground points within max_distance of non-ground point when performing
neighbor interpolation. [Default: None]

allow_extrapolation
If false and a non-ground point lies outside of the bounding box of all ground points, its
HeightAboveGround is set to 0. If true, extrapolation is used to assign the
HeightAboveGround value. [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

7.5. Filters 221

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.hag_delaunay (page 212)
Compute pointwise height above ground using triangulation. Requires points to
classified as ground/non-ground prior to estimating.

filters.hag_dem (page 215)
Compute pointwise height above GDAL-readable DEM raster.

filters.hag_nn (page 218)
Compute pointwise height above ground estimate. Requires points to be classified as
ground/non-ground prior to estimating.

Colorization

filters.colorinterp

The color interpolation filter assigns scaled RGB values from an image based on a given
dimension. It provides three possible approaches:

1. You provide a minimum (page 225) and maximum (page 225), and the data are scaled for
the given dimension (page 225) accordingly.

2. You provide a k (page 225) and a mad (page 225) setting, and the scaling is set based on
Median Absolute Deviation.

3. You provide a k (page 225) setting and the scaling is set based on the k
(page 225)-number of standard deviations from the median.

You can provide your own GDAL (http://www.gdal.org)-readable image for the scale color
factors, but a number of pre-defined ramps are embedded in PDAL. The default ramps provided
by PDAL are 256x1 RGB images, and might be a good starting point for creating your own
scale factors. See Default Ramps (page 223) for more information.

Note: filters.colorinterp (page 222) will use the entire band to scale the colors.

Default Embedded Stage

This stage is enabled by default

222 Chapter 7. Drivers

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"uncolored.las",
{
"type":"filters.colorinterp",
"ramp":"pestel_shades",
"mad":true,
"k":1.8,
"dimension":"Z"

},
"colorized.las"

]

Fig. 4: Image data with interpolated colors based on Z dimension and pestel_shades ramp.

Default Ramps

PDAL provides a number of default color ramps you can use in addition to providing your own.
Give the ramp name as the ramp (page 225) option to the filter and it will be used. Otherwise,
provide a GDAL (http://www.gdal.org)-readable raster filename.

7.5. Filters 223

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

awesome_green

black_orange

blue_orange

blue_hue

blue_orange

blue_red

heat_map

pestel_shades

224 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

ramp
The raster file to use for the color ramp. Any format supported by GDAL
(http://www.gdal.org) may be read. Alternatively, one of the default color ramp names
can be used. [Default: “pestel_shades”]

dimension
A dimension name to use for the values to interpolate colors. [Default: “Z”]

minimum
The minimum value to use to scale the data. If none is specified, one is computed from
the data. If one is specified but a k (page 225) value is also provided, the k (page 225)
value will be used.

maximum
The maximum value to use to scale the data. If none is specified, one is computed from
the data. If one is specified but a k (page 225) value is also provided, the k (page 225)
value will be used.

invert
Invert the direction of the ramp? [Default: false]

k
Color based on the given number of standard deviations from the median. If set,
minimum (page 225) and maximum (page 225) will be computed from the median and
setting them will have no effect.

mad
If true, minimum (page 225) and maximum (page 225) will be computed by the median
absolute deviation. See filters.mad (page 305) for discussion. [Default: false]

mad_multiplier
MAD threshold multiplier. Used in conjunction with k (page 225) to threshold the
differencing. [Default: 1.4862]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 225

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.colorization

The colorization filter populates dimensions in the point buffer using input values read from a
raster file. Commonly this is used to add Red/Green/Blue values to points from an aerial
photograph of an area. However, any band can be read from the raster and applied to any
dimension name desired.

Fig. 5: After colorization, points take on the colors provided by the input image

Note: GDAL (http://www.gdal.org) is used to read the color information and any
GDAL-readable supported format (https://www.gdal.org/formats_list.html) can be read.

The bands of the raster to apply to each are selected using the “band” option, and the values of
the band may be scaled before being written to the dimension. If the band range is 0-1, for
example, it might make sense to scale by 256 to fit into a traditional 1-byte color value range.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

226 Chapter 7. Drivers

http://www.gdal.org
https://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"uncolored.las",
{
"type":"filters.colorization",
"dimensions":"Red:1:1.0, Blue, Green::256.0",
"raster":"aerial.tif"

},
"colorized.las"

]

Considerations

Certain data configurations can cause degenerate filter behavior. One significant knob to adjust
is the GDAL_CACHEMAX environment variable. One driver which can have issues is when a TIFF
(http://www.gdal.org/frmt_gtiff.html) file is striped vs. tiled. GDAL’s data access in that
situation is likely to cause lots of re-reading if the cache isn’t large enough.

Consider a striped TIFF file of 286mb:

-rw-r-----@ 1 hobu staff 286M Oct 29 16:58 orth-striped.tif

[
"colourless.laz",
{
"type":"filters.colorization",
"raster":"orth-striped.tif"

},
"coloured-striped.las"

]

Simple application of the filters.colorization (page 226) using the striped TIFF
(http://www.gdal.org/frmt_gtiff.html) with a 268mb readers.las (page 89) file will take nearly
1:54.

[hobu@pyro knudsen (master)]$ time ~/dev/git/pdal/bin/pdal pipeline -i␣
→˓striped.json

real 1m53.477s
user 1m20.018s
sys 0m33.397s

7.5. Filters 227

http://www.gdal.org/frmt_gtiff.html
http://www.gdal.org/frmt_gtiff.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Setting the GDAL_CACHEMAX variable to a size larger than the TIFF file dramatically speeds up
the color fetching:

[hobu@pyro knudsen (master)]$ export GDAL_CACHEMAX=500
[hobu@pyro knudsen (master)]$ time ~/dev/git/pdal/bin/pdal pipeline␣
→˓striped.json

real 0m19.034s
user 0m15.557s
sys 0m1.102s

Options

raster
The raster file to read the band from. Any format
(https://www.gdal.org/formats_list.html) supported by GDAL (http://www.gdal.org) may
be read.

dimensions
A comma separated list of dimensions to populate with values from the raster file.
Dimensions will be created if they don’t already exist. The format of each dimension is
<name>:<band_number>:<scale_factor>. Either or both of band number and scale factor
may be omitted as may ‘:’ separators if the data is not ambiguous. If not supplied, band
numbers begin at 1 and increment from the band number of the previous dimension. If
not supplied, the scaling factor is 1.0. [Default: “Red:1:1.0, Green:2:1.0, Blue:3:1.0”]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.colorinterp (page 222)
Assign RGB colors based on a dimension and a ramp

filters.colorization (page 226)
Fetch and assign RGB color information from a GDAL-readable datasource.

228 Chapter 7. Drivers

https://www.gdal.org/formats_list.html
http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Clustering

filters.cluster

The Cluster filter first performs Euclidean Cluster Extraction on the input PointView and then
labels each point with its associated cluster ID. It creates a new dimension ClusterID that
contains the cluster ID value. Cluster IDs start with the value 1. Points that don’t belong to any
cluster will are given a cluster ID of 0.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.cluster"
},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,ClusterID"

}
]

Options

min_points
Minimum number of points to be considered a cluster. [Default: 1]

max_points
Maximum number of points to be considered a cluster. [Default: 2^64 - 1]

tolerance
Cluster tolerance - maximum Euclidean distance for a point to be added to the cluster.
[Default: 1.0]

is3d
By default, clusters are formed by considering neighbors in a 3D sphere, but if is3d is

7.5. Filters 229

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

set to false, it will instead consider neighbors in a 2D cylinder (XY plane only). [Default:
true]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.dbscan

The DBSCAN filter performs Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [Ester1996] and labels each point with its associated cluster ID. Points that do not
belong to a cluster are given a Cluster ID of -1. The remaining clusters are labeled as integers
starting from 0.

Default Embedded Stage

This stage is enabled by default

Added in version 2.1.

Example

[
"input.las",
{

"type":"filters.dbscan",
"min_points":10,
"eps":2.0,
"dimensions":"X,Y,Z"

},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,ClusterID"

(continues on next page)

230 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
}

]

Options

min_points
The minimum cluster size min_points should be greater than or equal to the number of
dimensions (e.g., X, Y, and Z) plus one. As a rule of thumb, two times the number of
dimensions is often used. [Default: 6]

eps
The epsilon parameter can be estimated from a k-distance graph (for k = min_points
minus one). eps defines the Euclidean distance that will be used when searching for
neighbors. [Default: 1.0]

dimensions
Comma-separated string indicating dimensions to use for clustering. [Default: X,Y,Z]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.litree

The purpose of the Li tree filter is to segment individual trees from an input PointView. In the
output PointView points that are deemed to be part of a tree are labeled with a ClusterID.
Tree IDs start at 1, with non-tree points given a ClusterID of 0.

Note: The filter differs only slightly from the paper in the addition of a few conditions on size
of tree, minimum height above ground for tree seeding, and flexible radius for non-tree seed
insertion.

Note: In earlier PDAL releases (up to v2.2.0), ClusterID was stored in the TreeID

7.5. Filters 231

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dimemsion.

Default Embedded Stage

This stage is enabled by default

Example

The Li tree algorithm expects to visit points in descending order of HeightAboveGround,
which is also used in determining the minimum tree height to consider. As such, the following
pipeline precomputes HeightAboveGround using filters.hag_delaunay (page 212) and
subsequently sorts the PointView using this dimension.

[
"input.las",
{

"type":"filters.hag_delaunay"
},
{

"type":"filters.sort",
"dimension":"HeightAboveGround",
"order":"DESC"

},
{

"type":"filters.litree",
"min_points":50,
"min_height":10.0,
"radius":200.0

},
{

"type":"writers.las",
"filename":"output.laz",
"minor_version":1.4,
"extra_dims":"all"

}
]

232 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

min_points
Minimum number of points in a tree cluster. [Default: 10]

min_height
Minimum height above ground to start a tree cluster. [Default: 3.0]

radius
The seed point for the non-tree cluster is the farthest point in a 2D Euclidean sense from
the seed point for the current tree. [Default: 100.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.lloydkmeans

K-means clustering using Lloyd’s algorithm labels each point with its associated cluster ID
(starting at 0).

Default Embedded Stage

This stage is enabled by default

Added in version 2.1.

Example

[
"input.las",
{

"type":"filters.lloydkmeans",
"k":10,
"maxiters":20,

(continues on next page)

7.5. Filters 233

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"dimensions":"X,Y,Z"

},
{

"type":"writers.las",
"filename":"output.laz",
"minor_version":4,
"extra_dims":"all"

}
]

Options

k
The desired number of clusters. [Default: 10]

maxiters
The maximum number of iterations. [Default: 10]

dimensions
Comma-separated string indicating dimensions to use for clustering. [Default: X,Y,Z]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.cluster (page 229)
Extract and label clusters using Euclidean distance metric. Returns a new dimension
ClusterID that indicates the cluster that a point belongs to. Points not belonging to a
cluster are given a cluster ID of 0.

filters.dbscan (page 230)
Perform Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[Ester1996].

filters.litree (page 231)
Segment and label individual trees. Returns a new dimension TreeID that indicates the

234 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

tree that a point belongs to. TreeID starts at 1, with non-tree points given a TreeID of 0.
[Li2012].

filters.lloydkmeans (page 233)
Perform K-means clustering using Lloyd’s algorithm. Returns a new dimension
ClusterID with each point being assigned to a cluster. ClusterID starts at 0.
[Lloyd1982].

Pointwise Features

filters.approximatecoplanar

The approximate coplanar filter implements a portion of the algorithm presented in
[Limberger2015]. Prior to clustering points, the authors first apply an approximate coplanarity
test, where points that meet the following criteria are labeled as approximately coplanar.

𝜆2 > (𝑠𝛼𝜆1)&&(𝑠𝛽𝜆2) > 𝜆3

𝜆1, 𝜆2, 𝜆3 are the eigenvalues of a neighborhood of points (defined by knn nearest neighbors)
in ascending order. The threshold values 𝑠𝛼 and 𝑠𝛽 are user-defined and default to 25 and 6
respectively.

The filter returns a point cloud with a new dimension Coplanar that indicates those points that
are part of a neighborhood that is approximately coplanar (1) or not (0).

Default Embedded Stage

This stage is enabled by default

Example

The sample pipeline presented below estimates the planarity of a point based on its eight nearest
neighbors using the approximate coplanar filter. A filters.range (page 318) stage then filters out
any points that were not deemed to be coplanar before writing the result in compressed LAZ.

[
"input.las",
{

"type":"filters.approximatecoplanar",
"knn":8,
"thresh1":25,
"thresh2":6

(continues on next page)

7.5. Filters 235

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
{

"type":"filters.range",
"limits":"Coplanar[1:1]"

},
"output.laz"

]

Options

knn
The number of k-nearest neighbors. [Default: 8]

thresh1
The threshold to be applied to the smallest eigenvalue. [Default: 25]

thresh2
The threshold to be applied to the second smallest eigenvalue. [Default: 6]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.covariancefeatures

This filter implements various local feature descriptors that are based on the covariance matrix
of a point’s neighborhood.

The user can pick a set of feature descriptors by setting the feature_set option. The
dimensionality (page 239) set of feature descriptors introduced below is the default. The user
can also provide a comma-separated list of features to explicitly itemize those covariance
features they wish to be computed. This can be combined with any suppported presets like
“Dimensionality”. Specifying “all” will compute all available features.

Supported features include:

236 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Anisotropy

• DemantkeVerticality

• Density

• Eigenentropy

• Linearity

• Omnivariance

• Planarity

• Scattering

• EigenvalueSum

• SurfaceVariation

• Verticality

Note: Density requires both OptimalKNN and OptimalRadius which can be computed by
running filters.optimalneighborhood (page 249) prior to filters.covariancefeatures.

Example #1

[
"input.las",
{

"type":"filters.covariancefeatures",
"knn":8,
"threads": 2,
"feature_set": "Dimensionality"

},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,Linearity,Planarity,Scattering,Verticality"

}
]

7.5. Filters 237

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #2

[
"input.las",
{

"type":"filters.optimalneighborhood"
},
{

"type":"filters.covariancefeatures",
"knn":8,
"threads": 2,
"optimized":true,
"feature_set": "Linearity,Omnivariance,Density"

},
{

"type":"writers.las",
"minor_version":4,
"extra_dims":"all",
"forward":"all",
"filename":"output.las"

}
]

Options

knn
The number of k nearest neighbors used for calculating the covariance matrix. [Default:
10]

threads
The number of threads to use. Only valid in standard mode (page 58). [Default: 1]

feature_set
A comma-separated list of individual features or feature presets (e.g., “Dimensionality”)
to be computed. To compute all available features, specify “all”. [Default:
“Dimensionality”]

stride
When finding k nearest neighbors, stride determines the sampling rate. A stride of 1
retains each neighbor in order. A stride of two selects every other neighbor and so on.
[Default: 1]

min_k
Minimum number of neighbors in radius (radius search only). [Default: 3]

238 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

radius
If radius is specified, neighbors will be obtained by radius search rather than k nearest
neighbors, subject to meeting the minimum number of neighbors (min_k).

mode
By default, features are computed using the standard deviation along each eigenvector,
i.e., using the square root of the computed eigenvalues (mode="SQRT"). mode also
accepts “Normalized” which normalizes eigenvalue such that they sum to one, or “Raw”
such that the eigenvalues are used directly. [Default: “SQRT”]

optimized
optimized can be set to true to enable computation of features using precomputed
optimal neighborhoods (found in the OptimalKNN dimension). Requires
filters.optimalneighborhood (page 249) be run prior to this stage. [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Dimensionality feature set

The features introduced in [Demantke2011] describe the shape of the neighborhood, indicating
whether the local geometry is more linear (1D), planar (2D) or volumetric (3D) while the one
introduced in [Guinard2017] adds the idea of a structure being vertical.

The dimensionality filter introduces the following four descriptors that are computed from the
covariance matrix of a point’s neighbors (as defined by knn or radius):

• linearity - higher for long thin strips

• planarity - higher for planar surfaces

• scattering - higher for complex 3d neighbourhoods

• verticality - higher for vertical structures, highest for thin vertical strips

It introduces four new dimensions that hold each one of these values: Linearity, Planarity,
Scattering and Verticality.

7.5. Filters 239

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.eigenvalues

The eignvalue filter returns the eigenvalues for a given point, based on its k-nearest neighbors.

The filter produces three new dimensions (Eigenvalue0, Eigenvalue1, and Eigenvalue2),
which can be analyzed directly, or consumed by downstream stages for more advanced filtering.
The eigenvalues are sorted in ascending order.

The eigenvalue decomposition is performed using Eigen’s SelfAdjointEigenSolver
(https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html).

Default Embedded Stage

This stage is enabled by default

Example

This pipeline demonstrates the calculation of the eigenvalues. The newly created dimensions
are written out to BPF for further inspection.

[
"input.las",
{

"type":"filters.eigenvalues",
"knn":8

},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,Eigenvalue0,Eigenvalue1,Eigenvalue2"

}
]

Options

knn
The number of k-nearest neighbors. [Default: 8]

normalize
Normalize eigenvalues such that the sum is 1. [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression

240 Chapter 7. Drivers

https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.estimaterank

The rank estimation filter uses singular value decomposition (SVD) to estimate the rank of a
set of points. Point sets with rank 1 correspond to linear features, while sets with rank 2
correspond to planar features. Rank 3 corresponds to a full 3D feature. In practice this can be
used alone, or possibly in conjunction with other filters to extract features (e.g., buildings,
vegetation).

Two parameters are required to estimate rank (though the default values will be suitable in
many cases). First, the knn (page 242) parameter defines the number of points to consider when
computing the SVD and estimated rank. Second, the thresh (page 242) parameter is used to
determine when a singular value shall be considered non-zero (when the absolute value of the
singular value is greater than the threshold).

The rank estimation is performed on a pointwise basis, meaning for each point in the input
point cloud, we find its knn (page 242) neighbors, compute the SVD, and estimate rank. The
filter creates a new dimension called Rank that can be used downstream of this filter stage in
the pipeline. The type of writer used will determine whether or not the Rank dimension itself
can be saved to disk.

Default Embedded Stage

This stage is enabled by default

Example

This sample pipeline estimates the rank of each point using this filter and then filters out those
points where the rank is three using filters.range (page 318).

[
"input.las",
{

"type":"filters.estimaterank",
(continues on next page)

7.5. Filters 241

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"knn":8,
"thresh":0.01

},
{

"type":"filters.range",
"limits":"Rank![3:3]"

},
"output.laz"

]

Options

knn
The number of k-nearest neighbors. [Default: 8]

thresh
The threshold used to identify nonzero singular values. [Default: 0.01]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.lof

The Local Outlier Factor (LOF) filter was introduced as a method of determining the degree
to which an object is an outlier. This filter is an implementation of the method described in
[Breunig2000].

The filter creates three new dimensions, NNDistance, LocalReachabilityDistance and
LocalOutlierFactor, all of which are double-precision floating values. The NNDistance
dimension records the Euclidean distance between a point and it’s k-th nearest neighbor (the
number of k neighbors is set with the minpts (page 244) option). The
LocalReachabilityDistance is the inverse of the mean of all reachability distances for a
neighborhood of points. This reachability distance is defined as the max of the Euclidean
distance to a neighboring point and that neighbor’s own previously computed NNDistance.

242 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Finally, each point has a LocalOutlierFactor which is the mean of all
LocalReachabilityDistance values for the neighborhood. In each case, the neighborhood
is the set of k nearest neighbors.

In practice, setting the minpts (page 244) parameter appropriately and subsequently filtering
outliers based on the computed LocalOutlierFactor can be difficult. The authors present
some work on establishing upper and lower bounds on LOF values, and provide some
guidelines on selecting minpts (page 244) values, which users of this filter should find
instructive.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Note: In earlier PDAL releases (up to v2.2.0), NNDistance was stored in the KDistance
Dimemsion.

Default Embedded Stage

This stage is enabled by default

Example

The sample pipeline below computes the LOF with a neighborhood of 20 neighbors, followed
by a range filter to crop out points whose LocalOutlierFactor exceeds 1.2 before writing
the output.

[
"input.las",
{

"type":"filters.lof",
"minpts":20

},
{

"type":"filters.range",
"limits":"LocalOutlierFactor[:1.2]"

},
"output.laz"

]

7.5. Filters 243

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

minpts
The number of k nearest neighbors. [Default: 10]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.miniball

The Miniball Criterion was introduced in [Weyrich2004] and is based on the assumption that
points that are distant to the cluster built by their k-neighborhood are likely to be outliers. First,
the smallest enclosing ball is computed for the k-neighborhood, giving a center point and radius
[Fischer2010]. The miniball criterion is then computed by comparing the distance (from the
current point to the miniball center) to the radius of the miniball.

The author suggests that the Miniball Criterion is more robust than the Plane Fit Criterion
(page 250) around high-frequency details, but demonstrates poor outlier detection for points
close to a smooth surface.

The filter creates a single new dimension, Miniball, that records the Miniball criterion for the
current point.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage

This stage is enabled by default

244 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

The sample pipeline below computes the Miniball criterion with a neighborhood of 8
neighbors. We do not apply a fixed threshold to single out outliers based on the Miniball
criterion as the range of values can vary from one dataset to another. In general, higher values
indicate the likelihood of a point being an outlier.

[
"input.las",
{

"type":"filters.miniball",
"knn":8

},
"output.laz"

]

Options

knn
The number of k nearest neighbors. [Default: 8]

threads
The number of threads to use. Only valid in standard mode (page 58). [Default: 1]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 245

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.nndistance

The NNDistance filter runs a 3-D nearest neighbor algorithm on the input cloud and creates a
new dimension, NNDistance, that contains a distance metric described by the mode (page 246)
of the filter.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.nndistance",
"k":8

},
{

"type":"writers.bpf",
"filename":"output.las",
"output_dims":"X,Y,Z,NNDistance"

}
]

Options

mode
The mode of operation. Either “kth”, in which the distance is the euclidian distance of
the subject point from the kth remote point or “avg” in which the distance is the average
euclidian distance from the k (page 246) nearest points. [Default: ‘kth’]

k
The number of k nearest neighbors to consider. [Default: 10]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the

246 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.normal

The normal filter returns the estimated normal and curvature for a collection of points. The
algorithm first computes the eigenvalues and eigenvectors of the collection of points, which is
comprised of the k-nearest neighbors. The normal is taken as the eigenvector corresponding to
the smallest eigenvalue. The curvature is computed as

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
𝜆0

𝜆0 + 𝜆1 + 𝜆2

where 𝜆𝑖 are the eigenvalues sorted in ascending order.

The filter produces four new dimensions (NormalX, NormalY, NormalZ, and Curvature),
which can be analyzed directly, or consumed by downstream stages for more advanced filtering.

The eigenvalue decomposition is performed using Eigen’s SelfAdjointEigenSolver
(https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html).

Normals will be automatically flipped towards positive Z, unless the always_up (page 248) flag
is set to false. Users can optionally set any of the XYZ coordinates to specify a custom
viewpoint (page 248) or set them all to zero to effectively disable the normal flipping.

Note: By default, the Normal filter will invert normals such that they are always pointed “up”
(positive Z). If the user provides a viewpoint (page 248), normals will instead be inverted such
that they are oriented towards the viewpoint, regardless of the always_up (page 248) flag. To
disable all normal flipping, do not provide a viewpoint (page 248) and set always_up
(page 248) to false.

In addition to always_up (page 248) and viewpoint (page 248), users can run a refinement step
(off by default) that propagates normals using a minimum spanning tree. The propagated
normals can lead to much more consistent results across the dataset.

Note: To enable normal propagation, users can set refine (page 248) to true.

Default Embedded Stage

This stage is enabled by default

7.5. Filters 247

https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

This pipeline demonstrates the calculation of the normal values (along with curvature). The
newly created dimensions are written out to BPF for further inspection.

[
"input.las",
{

"type":"filters.normal",
"knn":8

},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,NormalX,NormalY,NormalZ,Curvature"

}
]

Options

knn
The number of k-nearest neighbors. [Default: 8]

viewpoint
A single WKT or GeoJSON 3D point. Normals will be inverted such that they are all
oriented towards the viewpoint.

always_up
A flag indicating whether or not normals should be inverted only when the Z component
is negative. [Default: true]

refine
A flag indicating whether or not to reorient normals using minimum spanning tree
propagation. [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

248 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.optimalneighborhood

The Optimal Neighborhood filter computes the eigenentropy (defined as the Shannon entropy
of the normalized eigenvalues) for a neighborhood of points in the range min_k to max_k. The
neighborhood size that minimizes the eigenentropy is saved to a new dimension OptimalKNN.
The corresponding radius of the neighborhood is saved to OptimalRadius. These dimensions
can be written to an output file or utilized directly by filters.covariancefeatures (page 236).

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.optimalneighborhood",
"min_k":8,
"max_k": 50

},
{

"type":"writers.las",
"minor_version":4,
"extra_dims":"all",
"forward":"all",
"filename":"output.las"

}
]

Options

min_k
The minimum number of k nearest neighbors to consider for optimal neighborhood
selection. [Default: 10]

max_k
The maximum number of k nearest neighbors to consider for optimal neighborhood
selection. [Default: 14]

7.5. Filters 249

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.planefit

The Plane Fit Criterion was introduced in [Weyrich2004] and computes the deviation of a
point from a manifold approximating its neighbors. First, a plane is fit to each point’s
k-neighborhood by performing an eigenvalue decomposition. Next, the mean point to plane
distance is computed by considering all points within the neighborhood. This is compared to
the point to plane distance of the current point giving rise to the k-neighborhood. As the mean
distance of the k-neighborhood approaches 0, the Plane Fit criterion will tend toward 1. As
point to plane distance of the current point approaches 0, the Plane Fit criterion will tend
toward 0.

The author suggests that the Plane Fit Criterion is well suited to outlier detection when
considering noisy reconstructions of smooth surfaces, but produces poor results around small
features and creases.

The filter creates a single new dimension, PlaneFit, that records the Plane Fit criterion for the
current point.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage

This stage is enabled by default

Example

The sample pipeline below computes the Plane Fit criterion with a neighborhood of 8
neighbors. We do not apply a fixed threshold to single out outliers based on the Plane Fit
criterion as the range of values can vary from one dataset to another. In general, higher values
indicate the likelihood of a point being an outlier.

[
"input.las",
{

"type":"filters.planefit",
"knn":8

},
"output.laz"

]

250 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

knn
The number of k nearest neighbors. [Default: 8]

threads
The number of threads to use. Only valid in standard mode (page 58). [Default: 1]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.radialdensity

The Radial Density filter creates a new attribute RadialDensity that contains the density of
points in a sphere of given radius.

The density at each point is computed by counting the number of points falling within a sphere
of given radius (page 252) (default is 1.0) and centered at the current point. The number of
neighbors (including the query point) is then normalized by the volume of the sphere, defined as

𝑉 =
4

3
𝜋𝑟3

The radius 𝑟 can be adjusted by changing the radius (page 252) option.

Default Embedded Stage

This stage is enabled by default

7.5. Filters 251

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"input.las",
{

"type":"filters.radialdensity",
"radius":2.0

},
{

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,RadialDensity"

}
]

Options

radius
Radius. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.reciprocity

The Nearest-Neighbor Reciprocity Criterion was introduced in [Weyrich2004] and is based
on a simple assumption, that valid points may be in the k-neighborhood of an outlier, but the
outlier will most likely not be part of the valid point’s k-neighborhood.

The author suggests that the Nearest-Neighbor Reciprocity Criterion is more robust than both
the Plane Fit (page 250) and Miniball (page 244) Criterion, being equally sensitive around
smooth and detailed regions. The criterion does however produce invalid results near manifold
borders.

252 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The filter creates a single new dimension, Reciprocity, that records the percentage of
points(in the range 0 to 100) that are considered uni-directional neighbors of the current point.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage

This stage is enabled by default

Example

The sample pipeline below computes reciprocity with a neighborhood of 8 neighbors, followed
by a range filter to crop out points whose Reciprocity percentage is less than 98% before
writing the output.

[
"input.las",
{

"type":"filters.reciprocity",
"knn":8

},
{

"type":"filters.range",
"limits":"Reciprocity[:98.0]"

},
"output.laz"

]

Options

knn
The number of k nearest neighbors. [Default: 8]

threads
The number of threads to use. Only valid in standard mode (page 58). [Default: 1]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

7.5. Filters 253

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.zsmooth

The Zsmooth Filter computes a new Z value as another dimension that is based on the Z
values of neighboring points.

All points within some distance in the X-Y plane from a reference point are ordered by Z value.
The reference point’s new smoothed Z value is chosen to be that of the Nth median value of the
neighboring points, where N is specified as the medianpercent option.

Use filters.assign (page 257) to assign the smoothed Z value to the actual Z dimension if
desired.

Example

Compute the smoothed Z value as the median Z value of the neighbors within 2 units and
assign the value back to the Z dimension.

Options

radius
All points within radius units from the reference point in the X-Y plane are considered to
determine the smoothed Z value. [Default: 1]

medianpercent
A value between 0 and 100 that specifies the relative position of ordered Z values of
neighbors to use as the new smoothed Z value. 0 specifies the minimum value. 100
specifies the maximum value. 50 specifies the mathematical median of the values.
[Default: 50]

dim
The name of a dimension to use for the adjusted Z value. Cannot be ‘Z’. [Required]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

254 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.griddecimation

The grid decimation filter transform only one point in each cells of a grid calculated from the
points cloud and a resolution therm. The transformation is done by the value information. The
selected point could be the highest or the lowest point on the cell. It can be used, for exemple,
to quickly filter vegetation points in order to keep only the canopy points.

Default Embedded Stage

This stage is enabled by default

Example

This example transform highest points of classification 5 in classification 9, on a grid of 0.75m
square.

[
"file-input.las",

{
"type": "filters.gridDecimation",
"output_type":"max",
"resolution": "0.75",
"where":"Classification==5",
"value":"Classification=9"

},
{

"type":"writers.las",
"filename":"file-output.las"

}
]

7.5. Filters 255

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

output_type
The type of points transform by the value information. The value should be "max" for
transform the highest point, or "min" for the lowest. [Default: false]

resolution
The resolution of the cells in meter. [Default: 1.]

value
A list of assignment expressions (page 258) to be applied to points. The list of values is
evaluated in order. [Default: none]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.approximatecoplanar (page 235)
Estimate pointwise planarity, based on k-nearest neighbors. Returns a new dimension
Coplanar where a value of 1 indicates that a point is part of a coplanar neighborhood (0
otherwise).

filters.covariancefeatures (page 236)
Filter that calculates local features based on the covariance matrix of a point’s
neighborhood.

filters.eigenvalues (page 240)
Compute pointwise eigenvalues, based on k-nearest neighbors.

filters.estimaterank (page 241)
Compute pointwise rank, based on k-nearest neighbors.

filters.lof (page 242)
Compute pointwise Local Outlier Factor (along with K-Distance and Local Reachability
Distance).

filters.miniball (page 244)
Compute a criterion for point neighbors based on the miniball algorithm.

filters.nndistance (page 246)
Compute a distance metric based on nearest neighbors.

256 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.normal (page 247)
Compute pointwise normal and curvature, based on k-nearest neighbors.

filters.optimalneighborhood (page 249)
Compute optimal k nearest neighbors and corresponding radius by minimizing pointwise
eigenentropy. Creates two new dimensions OptimalKNN and OptimalRadius.

filters.planefit (page 250)
Compute a deviation of a point from a manifold approximating its neighbors.

filters.radialdensity (page 251)
Compute pointwise density of points within a given radius.

filters.reciprocity (page 252)
Compute the percentage of points that are considered uni-directional neighbors of a point.

filters.zsmooth (page 254)
Compute a smoothed ‘Z’ value based on the ‘Z’ value of neighboring points.

filters.griddecimation (page 255)
Assign values for one point (the highest or lowest) per cell of a 2d regular grid.

Assignment

filters.assign

The assign filter allows you set the value of a dimension for all points to a provided value that
pass a range filter.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Note: The assignment and condition options are deprecated and may be removed in a future
release.

7.5. Filters 257

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

assignment
A range (page 320) followed by an assignment of a value (see example). Can be specified
multiple times. The assignments are applied sequentially to the dimension value as set
when the filter began processing. [Required]

condition
A single ranges (page 320) that a point’s values must pass in order for the assignment to
be performed. [Default: none] [Deprecated - use ‘value’]

value
A list of assignment expressions (page 258) to be applied to points. The list of values is
evaluated in order. [Default: none]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Assignment Expressions

The assignment expression syntax is an expansion on the PDAL expression syntax that
provides for assignment of values to points. The generic expression is:

"value" : "Dimension = ValueExpression [WHERE ConditionalExpression)]"

Dimension is the name of a PDAL dimension.

A ValueExpression consists of constants, dimension names and mathematical operators that
evaluates to a numeric value. The supported mathematical operations are addition(+),
subtraction(-), multiplication(*) and division(\).

A ConditionalExpression is an optional boolean value that must evaluate to true for the
ValueExpression to be applied.

Note: As of PDAL 2.7.0, assignment to a dimension that does not exist will cause it to be
created. It will always be created with type double, however.

258 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 1

[
"input.las",
{

"type": "filters.assign",
"value" : "Red = Red / 256"

},
"output.laz"

]

This scales the Red value by 1/256. If the input values are in the range 0 - 65535, the output
value will be in the range 0 - 255.

Example 2

[
"input.las",
{

"type": "filters.assign",
"value" : [

"Red = Red * 256",
"Green = Green * 256",
"Blue = Blue * 256"

]
},
"output.laz"

]

This scales the values of Red, Green and Blue by 256. If the input values are in the range 0 -
255, the output value will be in the range 0 - 65535. This can be handy when creating a COPC
(page 144) file which (as defined in LAS 1.4) needs color values scaled in that range.

Example 3

[
"input.las",
{

"type": "filters.assign",
"value": [

"Classification = 2 WHERE HeightAboveGround < 5",
(continues on next page)

7.5. Filters 259

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"Classification = 1 WHERE HeightAboveGround >= 5"

]
},
"output.laz"

]

This sets the classification of points to either Ground or Unassigned depending on the value
of the HeightAboveGround dimension.

Example 4

[
"input.las",
{

"type": "filters.assign",
"value": [

"X = 1",
"X = 2 WHERE X > 10"

]
},
"output.laz"

]

This sets the value of X for all points to 1. The second statement is essentially ignored since the
first statement sets the X value of all points to 1 and therefore no points the
ConditionalExpression of the second statement.

filters.overlay

The overlay filter allows you to set the values of a selected dimension based on an
OGR-readable polygon or multi-polygon.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

260 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

OGR SQL support

You can limit your queries based on OGR’s SQL support. If the filter has both a datasource
(page 262) and a query (page 262) option, those will be used instead of the entire OGR data
source. At this time it is not possible to further filter the OGR query based on a geometry but
that may be added in the future.

Note: The OGR SQL support follows the rules specified in ExecuteSQL
(http://www.gdal.org/ogr__api_8h.html#a9892ecb0bf61add295bd9decdb13797a)
documentation, and it will pass SQL down to the underlying datasource if it can do so.

Example 1

In this scenario, we are altering the attributes of the dimension Classification. Points from
autzen-dd.las that lie within a feature will have their classification to match the CLS field
associated with that feature.

[
"autzen-dd.las",
{

"type":"filters.overlay",
"dimension":"Classification",
"datasource":"attributes.shp",
"layer":"attributes",
"column":"CLS"

},
{

"filename":"attributed.las",
"scale_x":0.0000001,
"scale_y":0.0000001

}
]

Example 2

This example sets the Intensity attribute to CLS values read from the OGR SQL
(http://www.gdal.org/ogr_sql_sqlite.html) query.

[
"autzen-dd.las",

(continues on next page)

7.5. Filters 261

http://www.gdal.org/ogr__api_8h.html#a9892ecb0bf61add295bd9decdb13797a
http://www.gdal.org/ogr_sql_sqlite.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"filters.overlay",
"dimension":"Intensity",
"datasource":"attributes.shp",
"query":"SELECT CLS FROM attributes where cls!=6",
"column":"CLS"

},
"attributed.las"

]

Options

bounds
A bounds to pre-filter the OGR datasource that is passed to OGR_L_SetSpatialFilter
(https://gdal.org/doxygen/ogr__api_8h.html#a678d1735bc82533614ac005691d1138c) in
the form ([xmin, xmax], [ymin, ymax]).

dimension
Name of the dimension whose value should be altered. [Required]

datasource
OGR-readable datasource for Polygon or MultiPolygon data. [Required]

column
The OGR datasource column from which to read the attribute. [Default: first column]

query
OGR SQL query to execute on the datasource to fetch geometry and attributes. The
entire layer is fetched if no query is provided. [Default: none]

layer
The data source’s layer to use. [Default: first layer]

threads
The number of threads to use. Only valid in standard mode (page 58). [Default: 1]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

262 Chapter 7. Drivers

https://gdal.org/doxygen/ogr__api_8h.html#a678d1735bc82533614ac005691d1138c

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.assign (page 257)
Assign values for a dimension range to a specified value.

filters.overlay (page 260)
Assign values to a dimension based on the extent of an OGR-readable data source or an
OGR SQL query.

Dimension Create/Copy

filters.ferry

The ferry filter copies data from one dimension to another, creates new dimensions or both.

The filter is guided by a list of ‘from’ and ‘to’ dimensions in the format <from>=><to>. Data
from the ‘from’ dimension is copied to the ‘to’ dimension. The ‘from’ dimension must exist.
The ‘to’ dimension can be pre-existing or will be created by the ferry filter.

Alternatively, the format =><to> can be used to create a new dimension without copying data
from any source. The values of the ‘to’ dimension are default initialized (set to 0).

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example 1

In this scenario, we are making copies of the X and Y dimensions into the dimensions
StatePlaneX and StatePlaneY. Since the reprojection filter will modify the dimensions X
and Y, this allows us to maintain both the pre-reprojection values and the post-reprojection
values.

[
"uncompressed.las",
{

"type":"readers.las",
(continues on next page)

7.5. Filters 263

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"spatialreference":"EPSG:2993",
"filename":"../las/1.2-with-color.las"

},
{

"type":"filters.ferry",
"dimensions":"X => StatePlaneX, Y=>StatePlaneY"

},
{

"type":"filters.reprojection",
"out_srs":"EPSG:4326+4326"

},
{

"type":"writers.las",
"scale_x":"0.0000001",
"scale_y":"0.0000001",
"filename":"colorized.las"

}
]

Example 2

The ferry filter is being used to add a dimension Classification to points so that the value
can be set to ‘2’ and written as a LAS file.

[
{

"type": "readers.gdal",
"filename": "somefile.tif"

},
{

"type": "filters.ferry",
"dimensions": "=>Classification"

},
{

"type": "filters.assign",
"assignment": "Classification[:]=2"

},
"out.las"

]

264 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

dimensions
A list of dimensions whose values should be copied. The format of the option is
<from>=><to>, <from>=><to>,. . . Spaces are ignored. ‘from’ can be left empty, in
which case the ‘to’ dimension is created and default-initialized. ‘to’ dimensions will be
created if necessary.

Note: the old syntax that used ‘=’ instead of ‘=>’ between dimension names is still
supported.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.ferry (page 263)
Copy data from one dimension to another.

7.5.2 Order

There are currently three PDAL filters that can be used to reorder points. These filters will
invalidate an existing KD-tree.

filters.mortonorder

Sorts the XY data using Morton ordering (http://en.wikipedia.org/wiki/Z-order_curve).

It’s also possible to compute a reverse Morton code by reading the binary representation from
the end to the beginning. This way, points are sorted with a good dispersement. For example,
by successively selecting N representative points within tiles:

See also:

See LOPoCS (https://github.com/Oslandia/lopocs) and pgmorton
(https://github.com/Oslandia/pgmorton) for some use case examples of the Reverse Morton
algorithm.

Default Embedded Stage

7.5. Filters 265

http://en.wikipedia.org/wiki/Z-order_curve
https://github.com/Oslandia/lopocs
https://github.com/Oslandia/pgmorton

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage is enabled by default

Example

[
"uncompressed.las",
{

"type":"filters.mortonorder",
"reverse":"false"

},
{

"type":"writers.las",
"filename":"compressed.laz",
"compression":"true"

}
]

266 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.randomize

The randomize filter reorders the points in a point view randomly.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.randomize"
},
{

"type":"writers.las",
"filename":"output.las"

}
]

7.5. Filters 267

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.sort

The sort filter orders a point view based on the values of a dimension (page 269). The sorting
can be done in increasing (ascending) or decreasing (descending) order (page 269).

Default Embedded Stage

This stage is enabled by default

Example

[
"unsorted.las",
{

"type":"filters.sort",
"dimension":"X",
"order":"ASC"

},
"sorted.las"

]

268 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

dimension
The dimension on which to sort the points. [Required]

order
The order in which to sort, ASC or DESC [Default: “ASC”]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.mortonorder (page 265)
Sort XY data using Morton ordering (aka Z-order/Z-curve).

filters.randomize (page 267)
Randomize points in a view.

filters.sort (page 268)
Sort data based on a given dimension.

7.5.3 Move

PDAL filters that move XYZ coordinates will invalidate an existing KD-tree.

Registration

filters.cpd

The Coherent Point Drift (CPD) filter uses the algorithm of [MS10] algorithm to compute a
rigid, nonrigid, or affine transformation between datasets. The rigid and affine are what you’d
expect; the nonrigid transformation uses Motion Coherence Theory [YG88] to “bend” the
points to find a best alignment.

Note: CPD is computationally intensive and can be slow when working with many points (i.e.
> 10,000). Nonrigid is significantly slower than rigid and affine.

7.5. Filters 269

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The first input to the change filter are considered the “fixed” points, and all subsequent inputs
are “moving” points. The output from the change filter are the “moving” points after the
calculated transformation has been applied, one point view per input. Any additional
information about the cpd registration, e.g. the rigid transformation matrix, will be placed in
the stage’s metadata.

When to use CPD vs ICP

Summarized from the Non-rigid point set registration: Coherent Point Drift
(http://graphics.stanford.edu/courses/cs468-07-winter/Papers/nips2006_0613.pdf) paper.

• CPD outperforms the ICP in the presence of noise and outliers by the use of a
probabilistic assignment of correspondences between pointsets, which is innately more
robust than the binary assignment used in ICP.

• CPD does not work well for large in-plane rotation, such transformation can be first
compensated by other well known global registration techniques before CPD algorithm is
carried out

• CPD is most effective when estimating smooth non-rigid transformations.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Examples

[
"fixed.las",
"moving.las",
{

"type": "filters.cpd",
"method": "rigid"

},
"output.las"

]

If method (page 271) is not provided, the cpd filter will default to using the rigid registration
method. To get the transform matrix, you’ll need to use the “metadata” option of the pipeline
command:

$ pdal pipeline cpd-pipeline.json --metadata cpd-metadata.json

270 Chapter 7. Drivers

http://graphics.stanford.edu/courses/cs468-07-winter/Papers/nips2006_0613.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The metadata output might start something like:

{
"stages":
{

"filters.cpd":
{

"iterations": 10,
"method": "rigid",
"runtime": 0.003839,
"sigma2": 5.684342128e-16,
"transform": " 1 -6.21722e-17 1.30104e-18 5.

→˓29303e-11-8.99346e-17 1 2.60209e-18 -3.49247e-10 -2.1684e-
→˓19 1.73472e-18 1 -1.53477e-12 0 0 ␣
→˓ 0 1"

},
},

See also:

filters.transformation (page 282) to apply a transform to other points. filters.icp (page 272) for
deterministic binary point pair assignments.

Options

method
Change detection method to use. Valid values are “rigid”, “affine”, and “nonrigid”.
[Default: “rigid””]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 271

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.icp

The ICP filter uses the Iterative Closest Point (ICP) algorithm to calculate a rigid (rotation and
translation) transformation that best aligns two datasets. The first input to the ICP filter is
considered the “fixed” points, and all subsequent points are “moving” points. The output from
the filter are the “moving” points after the calculated transformation has been applied, one
point view per input. The transformation matrix is inserted into the stage’s metadata.

Note: ICP requires the initial pose of the two point sets to be adequately close, which is not
always possible, especially when the transformation is non-rigid. ICP can handle limited
non-rigid transformations but be aware ICP may be unable to escape a local minimum.
Consider using CPD instead.

From [LLW+19]:

ICP starts with an initial guess of the transformation between the two point sets and then
iterates between finding the correspondence under the current transformation and updating the
transformation with the newly found correspondence. ICP is widely used because it is rather
straightforward and easy to implement in practice; however, its biggest problem is that it does
not guarantee finding the globally optimal transformation. In fact, ICP converges within a very
small basin in the parameter space, and it easily becomes trapped in local minima. Therefore,
the results of ICP are very sensitive to the initialization, especially when high levels of noise
and large proportions of outliers exist.

Examples

[
"fixed.las",
"moving.las",
{

"type": "filters.icp"
},
"output.las"

]

To get the transform matrix, you’ll need to use the --metadata option from the pipeline
command:

$ pdal pipeline icp-pipeline.json --metadata icp-metadata.json

The metadata output might start something like:

272 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

{
"stages":
{

"filters.icp":
{

"centroid": " 583394 5.2831e+06 498.152",
"composed": " 1 2.60209e-18 -1.97906e-09 -

→˓0.374999 8.9407e-08 1 5.58794e-09 -0.614662 6.
→˓98492e-10 -5.58794e-09 1 0.033234 0 ␣
→˓0 0 1",

"converged": true,
"fitness": 0.01953125097,
"transform": " 1 2.60209e-18 -1.97906e-09 -

→˓0.375 8.9407e-08 1 5.58794e-09 -0.5625 6.98492e-10 -
→˓5.58794e-09 1 0.00411987 0 0 ␣
→˓ 0 1"

}

To apply this transformation to other points, the centroid and transform metadata items can
by used with filters.transformation in another pipeline. First, move the centroid of the
points to (0,0,0), then apply the transform, then move the points back to the original location.
For the above metadata, the pipeline would be similar to:

[
{

"type": "readers.las",
"filename": "in.las"

},
{

"type": "filters.transformation",
"matrix": "1 0 0 -583394 0 1 0 -5.2831e+06 0 0 1 -498.152 ␣

→˓0 0 0 1"
},
{

"type": "filters.transformation",
"matrix": "1 2.60209e-18 -1.97906e-09 -0.375 8.9407e-08␣

→˓ 1 5.58794e-09 -0.5625 6.98492e-10 -5.58794e-09 ␣
→˓ 1 0.00411987 0 0 0 1
→˓"

},
{

"type": "filters.transformation",
"matrix": "1 0 0 583394 0 1 0 5.2831e+06 0 0 1 498.152 0 0␣

(continues on next page)

7.5. Filters 273

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓0 1"

},
{

"type": "writers.las",
"filename": "out.las"

}
]

Note: The composed metadata matrix is a composition of the three transformation steps
outlined above, and can be used in a single call to filters.transformation as opposed to
the three separate calls.

See also:

filters.transformation (page 282) to apply a transform to other points. filters.cpd (page 269) for
the use of a probabilistic assignment of correspondences between pointsets.

Options

max_iter
Maximum number of iterations. [Default: 100]

max_similar
Max number of similar transforms to consider converged. [Default: 0]

mse_abs
Absolute threshold for MSE. [Default: 1e-12]

rt
Rotation threshold. [Default: 0.99999]

tt
Translation threshold. [Default: 9e-8]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

274 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.teaser

The TEASER filter uses the Truncated least squares Estimation And SEmidefinite Relaxation
(TEASER) algorithm [Yang2020] to calculate a rigid transformation that best aligns two
datasets. The first input to the ICP filter is considered the “fixed” points, and all subsequent
points are “moving” points. The output from the filter are the “moving” points after the
calculated transformation has been applied, one point view per input. The transformation
matrix is inserted into the stage’s metadata.

See also:

The plugin wraps the TEASER++ library, which can be found at
https://github.com/MIT-SPARK/TEASER-plusplus.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Examples

[
"fixed.las",
"moving.las",
{

"type": "filters.teaser"
},
"output.las"

]

To get the transform matrix, you’ll need to use the --metadata option from the pipeline
command:

$ pdal pipeline teaser-pipeline.json --metadata teaser-metadata.json

The metadata output might start something like:

{
"stages":
{

(continues on next page)

7.5. Filters 275

https://github.com/MIT-SPARK/TEASER-plusplus

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filters.teaser":
{

"centroid": " 583394 5.2831e+06 498.152",
"composed": " 1 2.60209e-18 -1.97906e-09 -

→˓0.374999 8.9407e-08 1 5.58794e-09 -0.614662 6.
→˓98492e -10 -5.58794e-09 1 0.033234 0 ␣
→˓ 0 0 1",

"converged": true,
"fitness": 0.01953125097,
"transform": " 1 2.60209e-18 -1.97906e-09 -

→˓0.375 8.9407e-08 1 5.58794e-09 -0.5625 6.98492e -10␣
→˓-5.58794e-09 1 0.00411987 0 0 ␣
→˓ 0 1"

}

To apply this transformation to other points, the centroid and transform metadata items can
by used with filters.transformation in another pipeline. First, move the centroid of the
points to (0,0,0), then apply the transform, then move the points back to the original location.
For the above metadata, the pipeline would be similar to:

[
{

"type": "readers.las",
"filename": "in.las"

},
{

"type": "filters.transformation",
"matrix": "1 0 0 -583394 0 1 0 -5.2831e+06 0 0 1 -498.152 ␣

→˓0 0 0 1"
},
{

"type": "filters.transformation",
"matrix": "1 2.60209e-18 -1.97906e-09 -0.375 8.9407e-08␣

→˓ 1 5.58794e-09 -0.5625 6.98492e -10 -5.58794e-09 ␣
→˓ 1 0.00411987 0 0 0 ␣
→˓1"

},
{

"type": "filters.transformation",
"matrix": "1 0 0 583394 0 1 0 5.2831e+06 0 0 1 498.152 0 0␣

→˓0 1"
},
{

(continues on next page)

276 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"type": "writers.las",
"filename": "out.las"

}
]

Note: The composed metadata matrix is a composition of the three transformation steps
outlined above, and can be used in a single call to filters.transformation as opposed to
the three separate calls.

See also:

filters.transformation (page 282) to apply a transform to other points.

Options

nr
Radius to use for normal estimation. [Default: 0.02]

fr
Radius to use when computing features. [Default: 0.04]

fpfh
Use FPFH to find correspondences? [Default: true]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.cpd (page 269)
Compute and apply transformation between two point clouds using the Coherent Point
Drift algorithm.

filters.icp (page 272)
Compute and apply transformation between two point clouds using the Iterative Closest
Point algorithm.

7.5. Filters 277

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.teaser (page 275)
Compute a rigid transformation between two point clouds using the teaser algorithm.

Predefined

filters.projpipeline

The projpipeline filter applies a coordinates transformation pipeline. The pipeline could be
specified as PROJ string (single step operation or multiple step string starting with
+proj=pipeline), a WKT2 string describing a CoordinateOperation, or a
“urn:ogc:def:coordinateOperation:EPSG::XXXX” URN.

Note: The projpipeline filter does not consider any spatial reference information. However
user could specify an output srs, but no check is done to ensure the compliance with the
provided transformation pipeline.

Note: The projpipeline filter is enabled if the version of GDAL is superior or equal to 3.0

Streamable Stage

This stage supports streaming operations

Example

This example shift point on the z-axis.

[
"untransformed.las",
{

"type":"filters.projpipeline",
"coord_op":"+proj=affine +zoff=100"

},
{

"type":"writers.las",
"filename":"transformed.las"

}
]

278 Chapter 7. Drivers

urn:ogc:def:coordinateOperation:EPSG::XXXX

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This example apply a shift on the z-axis then reproject from utm 10 to WGS84, using the
reverse_transfo flag. It also set the output srs

[
"utm10.las",
{

"type":"filters.projpipeline",
"coord_op":"+proj=pipeline +step +proj=unitconvert +xy_in=deg␣

→˓+xy_out=rad +step +proj=utm +zone=10 +step +proj=affine +zoff=100",
"reverse_transfo": "true",
"out_srs": "EPSG:4326"

},
{

"type":"writers.las",
"filename":"wgs84.las"

}
]

Note: PDAL use the GDAL OGRCoordinateTransformation class to transform coordinates.
By default output angular unit are in radians. To change to degrees we need to apply a unit
conversion step.

Options

coord_op
The coordinate operation string. Could be specified as PROJ string (single step operation
or multiple step string starting with +proj=pipeline), a WKT2 string describing a
CoordinateOperation, or a “urn:ogc:def:coordinateOperation:EPSG::XXXX” URN.

reverse_transfo
Boolean, Whether the coordinate operation should be evaluated in the reverse path
[Default: false]

out_srs
The spatial reference system of the file to be written. Can be an EPSG string (e.g.
“EPSG:26910”) or a WKT string. No check is done to ensure the compliance with the
specified coordinate operation [Default: Not set]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.5. Filters 279

urn:ogc:def:coordinateOperation:EPSG::XXXX

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.reprojection

The reprojection filter converts the X, Y and/or Z dimensions to a new spatial reference
system. The old coordinates are replaced by the new ones. If you want to preserve the old
coordinates for future processing, use a filters.ferry (page 263) to create copies of the original
dimensions before reprojecting.

Note: When coordinates are reprojected, it may significantly change the precision necessary to
represent the values in some output formats. Make sure that you’re familiar with any scaling
necessary for your output format based on the projection you’ve used.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example 1

This pipeline reprojects terrain points with Z-values between 0 and 100 by first applying a
range filter and then specifying both the input and output spatial reference as EPSG-codes. The
X and Y dimensions are scaled to allow enough precision in the output coordinates.

[
{

"filename":"input.las",
"type":"readers.las",
"spatialreference":"EPSG:26916"

},
{

"type":"filters.range",
(continues on next page)

280 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"limits":"Z[0:100],Classification[2:2]"

},
{

"type":"filters.reprojection",
"in_srs":"EPSG:26916",
"out_srs":"EPSG:4326"

},
{

"type":"writers.las",
"scale_x":"0.0000001",
"scale_y":"0.0000001",
"scale_z":"0.01",
"offset_x":"auto",
"offset_y":"auto",
"offset_z":"auto",
"filename":"example-geog.las"

}
]

Example 2

In some cases it is not possible to use a EPSG-code as a spatial reference. Instead Proj.4
(http:/proj4.org) parameters can be used to define a spatial reference. In this example the
vertical component of points in a laz file is converted from geometric (ellipsoidal) heights to
orthometric heights by using the geoidgrids parameter from Proj.4. Here we change the
vertical datum from the GRS80 ellipsoid to DVR90, the vertical datum in Denmark. In the
writing stage of the pipeline the spatial reference of the file is set to EPSG:7416. The last step
is needed since PDAL will otherwise reference the vertical datum as “Unnamed Vertical
Datum” in the spatial reference VLR.

[
"./1km_6135_632.laz",
{

"type":"filters.reprojection",
"in_srs":"EPSG:25832",
"out_srs":"+init=epsg:25832 +geoidgrids=C:/data/geoids/dvr90.gtx

→˓"
},
{

"type":"writers.las",
"a_srs":"EPSG:7416",

(continues on next page)

7.5. Filters 281

http:/proj4.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"1km_6135_632_DVR90.laz"

}
]

Options

in_srs
Spatial reference system of the input data. Express as an EPSG string (eg “EPSG:4326”
for WGS84 geographic), Proj.4 string or a well-known text string. [Required if not part
of the input data set]

out_srs
Spatial reference system of the output data. Express as an EPSG string (eg “EPSG:4326”
for WGS84 geographic), Proj.4 string or a well-known text string. [Required]

in_axis_ordering
An array of numbers that override the axis order for the in_srs (or if not specified, the
inferred SRS from the previous Stage). “2, 1” for example would swap X and Y, which
may be commonly needed for something like “EPSG:4326”.

in_coord_epoch
Coordinate epoch for the input coordinate system as a double. [Default: 0]

out_axis_ordering
An array of numbers that override the axis order for the out_srs. “2, 1” for example
would swap X and Y, which may be commonly needed for something like “EPSG:4326”.

out_coord_epoch
Coordinate epoch for the output coordinate system as a double. [Default: 0]

error_on_failure
If true and reprojection of any point fails, throw an exception that terminates PDAL .
[Default: false]

filters.transformation

The transformation filter applies an arbitrary homography transformation, represented as a 4x4
matrix (page 283), to each xyz triplet.

Note: The transformation filter does not apply or consider any spatial reference information.

Default Embedded Stage

282 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example rotates the points around the z-axis while translating them.

[
"untransformed.las",
{

"type":"filters.transformation",
"matrix":"0 -1 0 1 1 0 0 2 0 0 1 3 0 0 0 1"

},
{

"type":"writers.las",
"filename":"transformed.las"

}
]

Options

invert
If set to true, applies the inverse of the provided transformation matrix. [Default: false]

matrix
A whitespace-delimited transformation matrix. The matrix is assumed to be presented in
row-major order. Only matrices with sixteen elements are allowed.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 283

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Further details

A full tutorial about transformation matrices is beyond the scope of this documentation.
Instead, we will provide a few pointers to introduce core concepts, especially as pertains to
PDAL’s handling of the matrix argument.

Transformations in a 3-dimensional coordinate system can be represented as a homography
transformation using homogeneous coordinates. This 4x4 matrix can represent affine
transformations describing operations like translation, rotation, and scaling of coordinates. In
addition it can represent perspective transformations modeling a pinhole camera.

The transformation filter’s matrix argument is a space delimited, 16 element string. This
string is simply a row-major representation of the 4x4 matrix (i.e., first four elements
correspond to the top row of the transformation matrix and so on).

In the event that readers are accustomed to an alternate representation of the transformation
matrix, we provide some simple examples in the form of pure translations, rotations, and
scaling, and show the corresponding matrix string.

Translation

A pure translation by 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 in the X, Y, and Z dimensions is represented by the
following matrix.

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

The JSON syntax required for such a translation is written as follows for 𝑡𝑥 = 7, 𝑡𝑦 = 8, and
𝑡𝑧 = 9.

[
{

"type":"filters.transformation",
"matrix":"1 0 0 7 0 1 0 8 0 0 1 9 0 0 0 1"

}
]

284 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Scaling

Scaling of coordinates is also possible using a transformation matrix. The matrix shown below
will scale the X coordinates by 𝑠𝑥, the Y coordinates by 𝑠𝑦, and Z by 𝑠𝑧.

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

We again provide an example JSON snippet to demonstrate the scaling transformation. In the
example, X and Y are not scaled at all (i.e., 𝑠𝑥 = 𝑠𝑦 = 1) and Z is magnified by a factor of 2
(𝑠𝑧 = 2).

[
{

"type":"filters.transformation",
"matrix":"1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1"

}
]

Rotation

A rotation of coordinates by 𝜃 radians counter-clockwise about the z-axis is accomplished with
the following matrix.

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0
0 0 1 0
0 0 0 1

In JSON, a rotation of 90 degrees (𝜃 = 1.57 radians) takes the form shown below.

[
{

"type":"filters.transformation",
"matrix":"0 -1 0 0 1 0 0 0 0 0 1 0 0 0 0 1"

}
]

Similarly, a rotation about the x-axis by 𝜃 radians is represented as

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

7.5. Filters 285

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

which takes the following form in JSON for a rotation of 45 degrees (𝜃 = 0.785 radians)

[
{

"type":"filters.transformation",
"matrix":"1 0 0 0 0 0.707 -0.707 0 0 0.707 0.707 0 ␣

→˓0 0 0 1"
}

]

Finally, a rotation by 𝜃 radians about the y-axis is accomplished with the matrix

cos 𝜃 0 sin 𝜃 0
0 1 0 0

− sin 𝜃 0 cos 𝜃 0
0 0 0 1

and the JSON string for a rotation of 10 degrees (𝜃 = 0.175 radians) becomes

[
{

"type":"filters.transformation",
"matrix":"0.985 0 0.174 0 0 1 0 0 -0.174 0 0.985 0 ␣

→˓0 0 0 1"
}

]

filters.straighten

The straighten filter transforms the point cloud in a new parametric coordinate system, each
point in world coordinate (X,Y,Z) is being projected along closest poyline segment, and rotated
along the segment accordingly to the average m/roll value.

Streamable Stage

This stage supports streaming operations

Note: The new coordinate system (X’, Y’, Z’) could be understood as : * X’ : curvilinear
abcissa (or meter point) * Y’ : orthogonal distance to segment (or orthogonal distance to line) *
Z’ : orthogonal distance from (rolling) plane

286 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Examples

[
"input.las",
{

"type": "filters.straighten",
"polyline" : "LINSTRING ZM (...)"

},
"straighten.las"

]

[
"input.las",
{

"type": "filters.straighten",
"polyline" : "LINSTRING ZM (...)"

},
"straighten.las"

]

Options

polyline
wkt` or json` definition of a 3D linestring with measurment (LINESTRING ZM in wkt)
along which the cloud will be straighten. M is supposed to be roll expressed in radians.
This is mandatory.

offset
if you want to add an X’ during straightening operation (or take an offset into account
while unstraightening). This can be understood as a starting meter point. [Default: 0]

reverse
whether to straighten or unstraighten the point cloud [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:

7.5. Filters 287

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

auto]

filters.georeference

The georeference filter georeferences point cloud expressed in scanner coordinates, using
GpsTime Dimension as a synchronisation reference with a given trajectory.

Streamable Stage

This stage supports streaming operations

Note: This filter expects trajectory to :

• contains X, Y, Z, Roll, Pitch, Yaw, WanderAngle and GpsTime ;

• have coordinates expressed in WGS84 system (EPSG:4979) ;

• have all its angle values expressed in radians.

Examples

[
"input.rxp",
{

"type": "filters.georeference",
"trajectory_file" : "sbet.out",
"trajectory_options": {
"type": "readers.sbet",
"angles_as_degrees": false

},
"scan2imu" : "-0.555809 0.545880 0.626970 0.053833
0.280774 0.833144 -0.476484 -0.830238
-0.782459 -0.088797 -0.616338 -0.099672
0.000000 0.000000 0.000000 1.000000"

},
{
"type" : "filters.reprojection",
"in_srs" : "EPSG:4979",
"out_srs" : "EPSG:2154+5720"

},
(continues on next page)

288 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"georeference.las"

]

Options

trajectory_file
path to a sbet trajectory file. [Mandatory]

trajectory_options
JSON object with keys of reader options and the values to pass through. [Default: {}]

scan2imu
4x4 transformation matrix from scanner frame to body imu. By default expressed in
NED coordinates. [Mandatory]

reverse
revert georeferencing (go back to scanner frame). [Default: false]

time_offset
timestamp offset between trajectory and scanner GpsTime. [Default: 0]

coordinate_system
Two right-handed variants exist for Local tangent plane coordinates: east, north, up
(ENU) coordinates and north, east, down (NED). [Default : NED]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 289

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.h3

The H3 filter adds a H3 (https://h3geo.org/docs/api/indexing/) ID at a given resolution. The
uint64_t integer corresponds to the H3 index
(https://h3geo.org/docs/core-library/latLngToCellDesc) of the point.

Streamable Stage

This stage supports streaming operations

Warning: filters.h3 (page 290) internally depends on being able to reproject the
coordinate system to EPSG:4326. If the data does not have coordinate system information,
the filter will throw an error.

Options

resolution
The H3 resolution [Default: 0]

filters.projpipeline (page 278)
Apply coordinates operation on point triplets, based on PROJ pipeline string, WKT2
coordinates operations or URN definitions.

filters.reprojection (page 280)
Reproject data using GDAL from one coordinate system to another.

filters.transformation (page 282)
Transform each point using a 4x4 transformation matrix.

filters.straighten (page 286)
Transforms each in a new parametric coordinate system along a given poyline.

filters.georeference (page 288)
Georeference point cloud.

filters.h3 (page 290)
Compute H3 index values for the Longitude/Latitude of the point cloud

290 Chapter 7. Drivers

https://h3geo.org/docs/api/indexing/
https://h3geo.org/docs/core-library/latLngToCellDesc

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.5.4 Cull

Some PDAL filters will cull points, returning a point cloud that is smaller than the input. These
filters will invalidate an existing KD-tree.

Spatial

filters.crop

The crop filter removes points that fall outside or inside a cropping bounding box (2D or 3D),
polygon, or point+distance. If more than one bounding region is specified, the filter will pass
all input points through each bounding region, creating an output point set for each input crop
region.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

The provided bounding regions are assumed to have the same spatial reference as the points
unless the option a_srs (page 293) provides an explicit spatial reference for bounding regions.
If the point input consists of multiple point views with differing spatial references, one is
chosen at random and assumed to be the spatial reference of the input bounding region. In this
case a warning will be logged.

Example 1

This example crops an input point cloud using a square polygon.

[
"file-input.las",
{

"type":"filters.crop",
"bounds":"([0,1000000],[0,1000000])"

},
{

"type":"writers.las",
"filename":"file-cropped.las"

(continues on next page)

7.5. Filters 291

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
}

]

Example 2

This example crops all points more than 500 units in any direction from a point.

[
"file-input.las",
{

"type":"filters.crop",
"point":"POINT(0 0 0)",
"distance": 500

},
{

"type":"writers.las",
"filename":"file-cropped.las"

}
]

Options

bounds
The extent of the clipping rectangle in the format "([xmin, xmax], [ymin,
ymax])". This option can be specified more than once by placing values in an array.

Note: 3D bounds can be given in the form ([xmin, xmax], [ymin, ymax],
[zmin, zmax]).

Warning: If a 3D bounds is given to the filter, a 3D crop will be attempted, even if
the Z values are invalid or inconsistent with the data.

polygon
The clipping polygon, expressed in a well-known text string, eg: "POLYGON((0 0,
5000 10000, 10000 0, 0 0))". This option can be specified more than once by
placing values in an array.

outside
Invert the cropping logic and only take points outside the cropping bounds or polygon.

292 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[Default: false]

point
An array of WKT or GeoJSON 2D or 3D points (eg: "POINT(0 0 0)"). Requires
distance (page 293).

distance
Distance (radius) in units of common X, Y, and Z Dimensions (page 365) in combination
with point (page 293). Passing a 2D point will crop using a circle. Passing a 3D point
will crop using a sphere.

a_srs
Indicates the spatial reference of the bounding regions. If not provided, it is assumed that
the spatial reference of the bounding region matches that of the points.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Notes

1. See Clipping data with polygons (page 462): and Clipping with Geometries (page 409)
for example usage scenarios for filters.crop (page 291).

filters.geomdistance

The geomdistance filter computes the distance between a given polygon and points.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.5. Filters 293

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 1

This example computes the 2D distance of points to the given geometry.

[
"autzen.las",
{

"type":"filters.geomdistance",
"geometry":"POLYGON ((636889.412951239268295 851528.

→˓512293258565478 422.7001953125,636899.14233423944097 851475.
→˓000686757150106 422.4697265625,636899.14233423944097 851475.
→˓000686757150106 422.4697265625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636928.33048324030824 851494.
→˓459452757611871 422.5400390625,636976.977398241520859 851513.
→˓918218758190051 424.150390625,636976.977398241520859 851513.
→˓918218758190051 424.150390625,637069.406536744092591 851475.
→˓000686757150106 438.7099609375,637132.647526245797053 851445.
→˓812537756282836 425.9501953125,637132.647526245797053 851445.
→˓812537756282836 425.9501953125,637336.964569251285866 851411.
→˓759697255445644 425.8203125,637336.964569251285866 851411.
→˓759697255445644 425.8203125,637473.175931254867464 851158.
→˓795739248627797 435.6298828125,637589.928527257987298 850711.
→˓244121236610226 420.509765625,637244.535430748714134 850511.
→˓791769731207751 420.7998046875,636758.066280735656619 850667.
→˓461897735483944 434.609375,636539.155163229792379 851056.
→˓63721774588339 422.6396484375,636889.412951239268295 851528.
→˓512293258565478 422.7001953125))",

},
"dimension":"distance",
{

"type":"writers.las",
"filename":"with-distance.las"

}
]

294 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 6: Normal distance mode causes any points within the given polygon to have a distance of
0.

7.5. Filters 295

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 7: ring of True causes the polygon external ring to be used for distance computation,
resulting in distances inside the polygon to be computed.

296 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

geometry
The polygon, expressed in a well-known text string, eg: "POLYGON((0 0, 5000
10000, 10000 0, 0 0))".

dimension
The dimension to write the distance into bounds or polygon. [Default: distance]

ogr
An ogr block (described in readers.ept (page 72))

ring
Use the outer ring of the polygon (so as to get distances to the exterior ring instead of all
points inside the polygon having distance 0). [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.crop (page 291)
Filter points inside or outside a bounding box or a polygon

filters.geomdistance (page 293)
Compute 2D distance from a polygon to points

Resampling

filters.decimation

The decimation filter retains every Nth point from an input point view.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

7.5. Filters 297

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage supports streaming operations

Example

[
{

"type": "readers.las",
"filename": "larger.las"

},
{

"type":"filters.decimation",
"step": 10

},
{

"type":"writers.las",
"filename":"smaller.las"

}
]

Options

step
Number of points to skip between each sample point. A step of 1 will skip no points. A
step of 2 will skip every other point. A step of 100 will reduce the input by ~99%. A step
of 1.6 will retain 100 / 1.6 = 62.5% of the points. [Default: 1.0]

offset
Point index to start sampling. Point indexes start at 0. [Default: 0]

limit
Point index at which sampling should stop (exclusive). [Default: No limit]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

298 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.fps

The Farthest Point Sampling Filter adds points from the input to the output PointView one
at a time by selecting the point from the input cloud that is farthest from any point currently in
the output.

See also:

filters.sample (page 301) produces a similar result, but while filters.sample allows us to
target a desired separation of points via the radius parameter at the expense of knowing the
number of points in the output, filters.fps allows us to specify exactly the number of output
points at the expense of knowing beforehand the spacing between points.

Default Embedded Stage

This stage is enabled by default

Options

count
Desired number of output samples. [Default: 1000]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.relaxationdartthrowing

The Relaxation Dart Throwing Filter is a variation on Poisson sampling. The approach was
first introduced by [McCool1992]. The filter operates nearly identically to filters.sample
(page 301), except it will continue to shrink the radius with each pass through the point cloud
until the desired number of output points is reached.

See also:

filters.decimation (page 297), filters.fps (page 299) and filters.sample (page 301) all perform

7.5. Filters 299

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

some form of thinning or resampling.

Note: The shuffle option does not reorder points in the PointView, but shuffles the order in
which the points are visited while processing, which can improve the quality of the result.

Default Embedded Stage

This stage is enabled by default

Options

decay
Decay rate for the radius shrinkage. [Default: 0.9]

radius
Starting minimum distance between samples. [Default: 1.0]

count
Desired number of points in the output. [Default: 1000]

shuffle
Choose whether or not to shuffle order in which points are visited. [Default: true]

seed
Seed for random number generator, used only with shuffle.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

300 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.sample

The Sample Filter performs Poisson sampling of the input PointView. The practice of
performing Poisson sampling via “Dart Throwing” was introduced in the mid-1980’s by
[Cook1986] and [Dippe1985], and has been applied to point clouds in other software
[Mesh2009].

Our implementation of Poisson sampling is made streamable by voxelizing the space and only
adding points to the output PointView if they do not violate the minimum distance criterion
(as specified by radius). The voxelization allows several optimizations, first by checking for
existing points within the same voxel as the point under consideration, which are mostly likely
to violate the minimum distance criterion. Furthermore, we can easily visit neighboring voxels
(limiting the search to those that are populated) without the need to create a KD-tree from the
entire input PointView first and performing costly spatial searches.

See also:

filters.decimation (page 297), filters.fps (page 299), filters.relaxationdartthrowing (page 299),
filters.voxelcenternearestneighbor (page 307), filters.voxelcentroidnearestneighbor (page 308),
and filters.voxeldownsize (page 309) also perform decimation.

Note: Starting with PDAL v2.3, the filters.sample now supports streaming mode. As a
result, there is no longer an option to shuffle points (or to provide a seed for the shuffle).

Note: Starting with PDAL v2.3, a cell option has been added that works with the existing
radius. The user must provide one or the other, but not both. The provided option will be
used to automatically compute the other. The relationship between cell and radius is such
that the radius defines the radius of a sphere that circumscribes a voxel with edge length
defined by cell.

Note: Care must be taken with selection of the cell/radius option. Although the filter can
now operate in streaming mode, if the extents of the point cloud are large (or conversely, if the
cell size is small) the voxel occupancy map which grows as a function of these variables can
still require a large memory footprint.

Note: To operate in streaming mode, the filter will typically retain the first point to occupy a
voxel (subject to the minimum distance criterion set forth earlier). This means that point
ordering matters, and in fact, it is quite possible that points in the incoming stream can be
ordered in such a way as to introduce undesirable artifacts (e.g., related to previous tiling of the
data). In our experience, processing data that is still in scan order (ordered by GpsTime, if

7.5. Filters 301

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

available) does produce reliable results, although to require this sort either internally or by
inserting filters.sort (page 268) prior to sampling would break our ability to stream the data.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Options

cell
Voxel cell size. If radius is set, cell is automatically computed such that the cell is
circumscribed by the sphere defined by radius.

radius
Minimum distance between samples. If cell is set, radius is automatically computed
to defined a sphere that circumscribes the voxel cell. Whether specified or derived,
radius defines the minimum allowable distance between points.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.decimation (page 297)
Keep every Nth point.

filters.fps (page 299)
The Farthest Point Sampling Filter adds points from the input to the output PointView
one at a time by selecting the point from the input cloud that is farthest from any point
currently in the output.

filters.relaxationdartthrowing (page 299)
Relaxation dart throwing is a hierarchical variant of Poisson disk sampling, shrinking the

302 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

minimum radius between iterations until the target number of output points is achieved.

filters.sample (page 301)
Perform Poisson sampling and return only a subset of the input points.

Conditional

filters.dem

The DEM filter uses a source raster to keep point cloud data within a each cell within a
computed range. For example, atmospheric or MTA noise in a scene can be quickly removed
by keeping all data within 100m above and 20m below a preexisting elevation model.

Default Embedded Stage

This stage is enabled by default

Example

[
{

"type":"filters.dem",
"raster":"dem.tif",
"limits":"Z[20:100]"

}
]

Options

limits
A range (page 320) that defines the dimension and the magnitude above and below the
value of the given dimension to filter.

For example “Z[20:100]” would keep all Z point cloud values that are within 100 units
above and 20 units below the elevation model value at the given X and Y value.

raster
GDAL readable raster (http://www.gdal.org/formats_list.html) data to use for filtering.

band
GDAL Band number to read (count from 1) [Default: 1]

7.5. Filters 303

http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.iqr

The Interquartile Range Filter automatically crops the input point cloud based on the
distribution of points in the specified dimension. The Interquartile Range (IQR) is defined as
the range between the first and third quartile (25th and 75th percentile). Upper and lower
bounds are determined by adding 1.5 times the IQR to the third quartile or subtracting 1.5
times the IQR from the first quartile. The multiplier, which defaults to 1.5, can be adjusted by
the user.

Note: This method can remove real data, especially ridges and valleys in rugged terrain, or tall
features such as towers and rooftops in flat terrain. While the number of deviations can be
adjusted to account for such content-specific considerations, it must be used with care.

Default Embedded Stage

This stage is enabled by default

Example

The sample pipeline below uses the filter to automatically crop the Z dimension and remove
possible outliers. The multiplier to determine high/low thresholds has been adjusted to be less
aggressive and to only crop those outliers that are greater than the third quartile plus 3 times the
IQR or are less than the first quartile minus 3 times the IQR.

[
"input.las",
{

"type":"filters.iqr",
(continues on next page)

304 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"dimension":"Z",
"k":3.0

},
"output.laz"

]

Options

k
The IQR multiplier used to determine upper/lower bounds. [Default: 1.5]

dimension
The name of the dimension to filter.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.mad

The MAD filter filter crops the input point cloud based on the distribution of points in the
specified dimension (page 306). Specifically, we choose the method of median absolute
deviation from the median (commonly referred to as MAD), which is robust to outliers (as
opposed to mean and standard deviation).

Note: This method can remove real data, especially ridges and valleys in rugged terrain, or tall
features such as towers and rooftops in flat terrain. While the number of deviations can be
adjusted to account for such content-specific considerations, it must be used with care.

Default Embedded Stage

This stage is enabled by default

7.5. Filters 305

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

The sample pipeline below uses filters.mad to automatically crop the Z dimension and remove
possible outliers. The number of deviations from the median has been adjusted to be less
aggressive and to only crop those outliers that are greater than four deviations from the median.

[
"input.las",
{

"type":"filters.mad",
"dimension":"Z",
"k":4.0

},
"output.laz"

]

Options

k
The number of deviations from the median. [Default: 2.0]

dimension
The name of the dimension to filter.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.dem (page 303)
Remove points that are in a raster cell but have a value far from the value of the raster.

filters.iqr (page 304)
Cull points falling outside the computed Interquartile Range for a given dimension.

filters.mad (page 305)
Cull points falling outside the computed Median Absolute Deviation for a given
dimension.

306 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Voxel

filters.voxelcenternearestneighbor

The VoxelCenterNearestNeighbor filter is a voxel-based sampling filter. The input point
cloud is divided into 3D voxels at the given cell size. For each populated voxel, the coordinates
of the voxel center are used as the query point in a 3D nearest neighbor search. The nearest
neighbor is then added to the output point cloud, along with any existing dimensions.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.voxelcenternearestneighbor",
"cell":10.0

},
"output.las"

]

See also:

filters.voxelcentroidnearestneighbor (page 308) offers a similar solution, using as the query
point the centroid of all points falling within the voxel as opposed to the voxel center
coordinates. The drawback with this approach is that all dimensional data is lost, leaving the
the sampled cloud consisting of only XYZ coordinates.

Options

cell
Cell size in the X, Y, and Z dimension. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the

7.5. Filters 307

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.voxelcentroidnearestneighbor

The VoxelCentroidNearestNeighbor Filter is a voxel-based sampling filter. The input point
cloud is divided into 3D voxels at the given cell size. For each populated voxel, we apply the
following ruleset. For voxels with only one point, the point is passed through to the output. For
voxels with exactly two points, the point closest the voxel center is returned. Finally, for voxels
with more than two points, the centroid of the points within that voxel is computed. This
centroid is used as the query point in a 3D nearest neighbor search (considering only those
points lying within the voxel). The nearest neighbor is then added to the output point cloud,
along with any existing dimensions.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.voxelcentroidnearestneighbor",
"cell":10.0

},
"output.las"

]

See also:

filters.voxelcenternearestneighbor (page 307) offers a similar solution, using the voxel center as
opposed to the voxel centroid for the query point.

308 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

cell
Cell size in the X, Y, and Z dimension. [Default: 1.0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.voxeldownsize

The voxeldownsize filter is a voxel-based sampling filter. The input point cloud is divided into
3D voxels at the given cell size. For each populated voxel, either first point entering in the voxel
or center of a voxel (depending on mode argument) is accepted and voxel is marked as
populated. All other points entering in the same voxel are filtered out.

Example

[
"input.las",
{

"type":"filters.voxeldownsize",
"cell":1.0,
"mode":"center"

},
"output.las"

]

See also:

filters.voxelcenternearestneighbor (page 307) offers a similar solution, using the coordinates of
the voxel center as the query point in a 3D nearest neighbor search. The nearest neighbor is
then added to the output point cloud, along with any existing dimensions.

7.5. Filters 309

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

cell
Cell size in the X, Y, and Z dimension. [Default: 0.001]

mode
Mode for voxel based filtering. [Default: center] center: Coordinates of the first point
found in each voxel will be modified to be the center of the voxel. first: Only the first
point found in each voxel is retained.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Warning: If you choose center mode, you are overwriting the X, Y and Z values of
retained points. This may invalidate other dimensions of the point if they depend on this
location or the location of other points in the input.

filters.voxelcenternearestneighbor (page 307)
Return the point within each voxel that is nearest the voxel center.

filters.voxelcentroidnearestneighbor (page 308)
Return the point within each voxel that is nearest the voxel centroid.

filters.voxeldownsize (page 309)
Retain either first point detected in each voxel or center of a populated voxel, depending
on mode argument.

Position

filters.expression

The Expression Filter applies filtering to the input point cloud based on a set of criteria on the
given dimensions.

Default Embedded Stage

310 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example passes through all points whose Z value is in the range [0,100] and whose
Classification equals 2 (corresponding to ground in LAS).

[
"input.las",
{

"type":"filters.expression",
"expression":"(Z >= 0 && Z <= 100) && Classifcation == 2"

},
{

"type":"writers.las",
"filename":"filtered.las"

}
]

The equivalent pipeline invoked via the PDAL translate command would be

$ pdal translate -i input.las -o filtered.las -f range --filters.
→˓expression.expression="(Z >= 0 && Z <= 100) && Classifcation == 2"

7.5. Filters 311

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

expression
An expression that limits points passed to a filter.

filters.head

The Head filter returns a specified number of points from the beginning of a PointView.

Note: If the requested number of points exceeds the size of the point cloud, all points are
passed with a warning.

Default Embedded Stage

This stage is enabled by default

Example #1

Thin a point cloud by first shuffling the point order with filters.randomize (page 267) and then
picking the first 10000 using the HeadFilter.

[
{

"type":"filters.randomize"
},
{

"type":"filters.head",
"count":10000

}
]

Example #2

Compute height above ground and extract the ten highest points.

[
{

"type":"filters.smrf"
(continues on next page)

312 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
{

"type":"filters.hag_nn"
},
{

"type":"filters.sort",
"dimension":"HeightAboveGround",
"order":"DESC"

},
{

"type":"filters.head",
"count":10

}
]

See also:

filters.tail (page 321) is the dual to filters.head (page 312).

Options

count
Number of points to return. [Default: 10]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 313

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.locate

The Locate filter searches the specified dimension (page 314) for the minimum or maximum
value and returns a single point at this location. If multiple points share the min/max value, the
first will be returned. All dimensions of the input PointView will be output, subject to any
overriding writer options.

Default Embedded Stage

This stage is enabled by default

Example

This example returns the point at the highest elevation.

[
"input.las",
{

"type":"filters.locate",
"dimension":"Z",
"minmax":"max"

},
"output.las"

]

Options

dimension
Name of the dimension in which to search for min/max value.

minmax
Whether to return the minimum or maximum value in the dimension.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

314 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.mongo

The Mongo Filter applies query logic to the input point cloud based on a MongoDB-style
query expression using the point cloud attributes.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example passes through only the points whose Classification is non-zero.

[
"input.las",
{

"type": "filters.mongo",
"expression": {

"Classification": { "$ne": 0 }
}

},
"filtered.las"

]

This example passes through only the points whose ReturnNumber is equal to the
NumberOfReturns and the NumberOfReturns is greater than 1.

[
"input.las",
{

"type": "filters.mongo",
"expression": { "$and": [

{ "ReturnNumber": "NumberOfReturns" },
(continues on next page)

7.5. Filters 315

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{ "NumberOfReturns": { "$gt": 1 } }

] }
},
"filtered.las"

]

Options

expression
A JSON query expression (page 316) containing a combination of query comparisons
and logical operators.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Expression

A query expression is a combination of comparison and logical operators that define a query
which can be used to select matching points by their attribute values.

Comparison operators

There are 8 valid query comparison operators:

• $eq: Matches values equal to a specified value.

• $gt: Matches values greater than a specified value.

• $gte: Matches values greater than or equal to a specified value.

• $lt: Matches values less than a specified value.

• $lte: Matches values less than or equal to a specified value.

• $ne: Matches values not equal to a specified value.

316 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• $in: Matches any of the values specified in the array.

• $nin: Matches none of the values specified in the array.

Comparison operators compare a point cloud attribute with an operand or an array of operands.
An operand is either a numeric constant or a string representing a dimension name. For all
comparison operators except for $in and $nin, the comparison value must be a single operand.
For $in and $nin, the value must be an array of operands.

Comparison operator specifications must be contained within an object whose key is the
dimension name to be compared.

{ "Classification": { "$eq": 2 } }

{ "Intensity": { "$gt": 0 } }

{ "Classification": { "$in": [2, 6, 9] } }

The $eq comparison operator may be implicitly invoked by setting an attribute name directly to
a value.

{ "Classification": 2 }

Logical operators

There are 4 valid logical operators:

• $and: Applies a logical and on the expressions of the array and returns a match only if
all expressions match.

• $not: Inverts the value of the single sub-expression.

• $nor: Applies a logical nor on the expressions of the array and returns a match only if
all expressions fail to match.

• $nor: Applies a logical or on the expressions of the array and returns a match if any of
the expressions match.

Logical operators are used to logically combine sub-expressions. All logical operators except
for $not are applied to arrays of expressions. $not is applied to a single expression and
negates its result.

Logical operators may be applied directly to comparison expressions or may contain further
nested logical operators. For example:

{ "$or": [
{ "Classification": 2 },

(continues on next page)

7.5. Filters 317

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{ "Intensity": { "$gt": 0 } }

] }

{ "$or": [
{ "Classification": 2 },
{ "$and": [

{ "ReturnNumber": "NumberOfReturns" },
{ "NumberOfReturns": { "$gt": 1 } }

] }
] }

{ "$not": {
"$or": [

{ "Classification": 2 },
{ "$and": [

{ "ReturnNumber": { "$gt": 0 } },
{ "Z": { "$lte": 42 } }

] }
] }

}

For any individual dimension, the logical and may be implicitly invoked via multiple
comparisons within the comparison object. For example:

{ "X": { "$gt": 0, "$lt": 42 } }

filters.range

The Range Filter applies rudimentary filtering to the input point cloud based on a set of
criteria on the given dimensions.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

318 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: We suggest you start using filters.expression (page 310) for PDAL 2.5.x+. The syntax is
simpler, and it is the same syntax that is used by the where option of many stages.
filters.range will be deprecated starting PDAL 3.0.

Example

This example passes through all points whose Z value is in the range [0,100] and whose
Classification equals 2 (corresponding to ground in LAS).

[
"input.las",
{

"type":"filters.range",
"limits":"Z[0:100],Classification[2:2]"

},
{

"type":"writers.las",
"filename":"filtered.las"

}
]

The equivalent pipeline invoked via the PDAL translate command would be

$ pdal translate -i input.las -o filtered.las -f range --filters.range.
→˓limits="Z[0:100],Classification[2:2]"

Options

limits
A comma-separated list of Ranges (page 320). If more than one range is specified for a
dimension, the criteria are treated as being logically ORed together. Ranges for different
dimensions are treated as being logically ANDed.

Example:

Classification[1:2], Red[1:50], Blue[25:75], Red[75:255],␣
→˓Classification[6:7]

This specification will select points that have the classification of 1, 2, 6 or 7 and have a
blue value or 25-75 and have a red value of 1-50 or 75-255. In this case, all values are
inclusive.

7.5. Filters 319

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Ranges

A range specification is a dimension name, followed by an optional negation character (‘!’), and
a starting and ending value separated by a colon, surrounded by parentheses or square brackets.
Either the starting or ending values can be omitted. Parentheses indicate an open endpoint that
doesn’t include the adjacent value. Square brackets indicate a closed endpoint that includes the
adjacent value.

Example 1:

Z[10:]

Selects all points with a Z value greater than or equal to 10.

Example 2:

Classification[2:2]

Selects all points with a classification of 2.

Example 3:

Red!(20:40]

Selects all points with red values less than or equal to 20 and those with values greater than 40

320 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 4:

Blue[:255)

Selects all points with a blue value less than 255.

Example 5:

Intensity![25:25]

Selects all points with an intensity not equal to 25.

filters.tail

The Tail Filter returns a specified number of points from the end of the PointView.

Note: If the requested number of points exceeds the size of the point cloud, all points are
passed with a warning.

Default Embedded Stage

This stage is enabled by default

Example

Sort and extract the 100 lowest intensity points.

[
{

"type":"filters.sort",
"dimension":"Intensity",
"order":"DESC"

},
{

"type":"filters.tail",
"count":100

}
]

7.5. Filters 321

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

See also:

filters.head (page 312) is the dual to filters.tail (page 321).

Options

count
Number of points to return. [Default: 10]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.expression (page 310)
Pass only points given an expression

filters.head (page 312)
Return N points from beginning of the point cloud.

filters.locate (page 314)
Return a single point with min/max value in the named dimension.

filters.mongo (page 315)
Cull points using MongoDB-style expression syntax.

filters.range (page 318)
Pass only points given a dimension/range.

filters.tail (page 321)
Return N points from end of the point cloud.

7.5.5 New

PDAL filters can be used to split the incoming point cloud into subsets. These filters will
invalidate an existing KD-tree.

322 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Spatial

filters.chipper

The Chipper Filter takes a single large point cloud and converts it into a set of smaller clouds,
or chips. The chips are all spatially contiguous and non-overlapping, so the result is an
irregular tiling of the input data.

Note: Each chip will have approximately, but not exactly, the capacity (page 325) point count
specified.

See also:

The PDAL split command (page 46) utilizes the filters.chipper (page 323) to split data by
capacity.

Fig. 8: Before chipping, the points are all in one collection.

Chipping is usually applied to data read from files (which produce one large stream of points)
before the points are written to a database (which prefer data segmented into smaller blocks).

Default Embedded Stage

This stage is enabled by default

7.5. Filters 323

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 9: After chipping, the points are tiled into smaller contiguous chips.

Example

[
"example.las",
{

"type":"filters.chipper",
"capacity":"400"

},
{

"type":"writers.pgpointcloud",
"connection":"dbname='lidar' user='user'"

}
]

324 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

capacity
How many points to fit into each chip. The number of points in each chip will not exceed
this value, and will sometimes be less than it. [Default: 5000]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.divider

The Divider Filter breaks a point view into a set of smaller point views based on simple
criteria. The number of subsets can be specified explicitly, or one can specify a maximum point
count for each subset. Additionally, points can be placed into each subset sequentially (as they
appear in the input) or in round-robin fashion.

Normally points are divided into subsets to facilitate output by writers that support creating
multiple output files with a template (LAS and BPF are notable examples).

Default Embedded Stage

This stage is enabled by default

Example

This pipeline will create 10 output files from the input file readers.las.

[
"example.las",
{

"type":"filters.divider",
"count":"10"

},
(continues on next page)

7.5. Filters 325

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"writers.las",
"filename":"out_#.las"

}
]

Options

mode
A mode of “partition” will write sequential points to an output view until the view meets
its predetermined size. “round_robin” mode will iterate through the output views as it
writes sequential points. [Default: “partition”]

count
Number of output views. [Default: none]

capacity
Maximum number of points in each output view. Views will contain approximately equal
numbers of points. [Default: none]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

Warning: You must specify exactly one of either count (page 326) or capacity (page 326).

326 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.splitter

The Splitter Filter breaks a point cloud into square tiles of a specified size. The origin of the
tiles is chosen arbitrarily unless specified with the origin_x (page 327) and origin_y (page 327)
option.

The splitter takes a single PointView as its input and creates a PointView for each tile as its
output.

Splitting is usually applied to data read from files (which produce one large stream of points)
before the points are written to a database (which prefer data segmented into smaller blocks).

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type":"filters.splitter",
"length":"100",
"origin_x":"638900.0",
"origin_y":"835500.0"

},
{

"type":"writers.pgpointcloud",
"connection":"dbname='lidar' user='user'"

}
]

Options

length
Length of the sides of the tiles that are created to hold points. [Default: 1000]

origin_x
X Origin of the tiles. [Default: none (chosen arbitrarily)]

origin_y
Y Origin of the tiles. [Default: none (chosen arbitrarily)]

7.5. Filters 327

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

buffer
Amount of overlap to include in each tile. This buffer is added onto length in both the x
and the y direction. [Default: 0]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.chipper (page 323)
Organize points into spatially contiguous, squarish, and non-overlapping chips.

filters.divider (page 325)
Divide points into approximately equal sized groups based on a simple scheme.

filters.splitter (page 327)
Split data based on a X/Y box length.

Dimension

filters.gpstimeconvert

The gpstimeconvert filter converts between three GPS time standards found in lidar data:

1. GPS time (gt)

2. GPS standard time (gst), also known as GPS adjusted time

3. GPS week seconds (gws)

Since GPS week seconds are ambiguous (they reset to 0 at the start of each new GPS week),
care must be taken when they are the source or destination of a conversion:

• When converting from GPS week seconds, the GPS week number must be known. This
is accomplished by specifying the start_date (page 330) (in the GMT time zone) on
which the data collection started. The filter will resolve the ambiguity using the supplied
start date.

• When converting from GPS week seconds and the times span a new GPS week, the
presence or absence of week second wrapping must be specified with the wrapped
(page 330) option. Wrapped week seconds reset to 0 at the start of a new week;
unwrapped week seconds are allowed to exceed 604800 (60x60x24x7) seconds.

328 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• When converting to GPS week seconds, the week second wrapping preference should be
specified with the wrap (page 330) option.

Note: The filter assumes points are ordered by ascending time, which can be accomplished by
running filters.sort (page 268) prior to filters.gpstimeconvert. Note that GPS week
second times that span a new GPS week should not be sorted unless they are unwrapped.

Example #1

Convert from GPS time to GPS standard time.

[
"input.las",
{

"type":"filters.gpstimeconvert",
"conversion":"gt2gst"

},
"output.las"

]

Example #2

Convert from GPS standard time to unwrapped GPS week seconds.

[
"input.las",
{

"type":"filters.sort",
"dimension":"GpsTime",
"order":"ASC"

},
{

"type":"filters.gpstimeconvert",
"conversion":"gst2gws",
"wrap":false

}
]

7.5. Filters 329

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example #3

Convert from wrapped GPS week seconds to GPS time.

[
"input.las",
{

"type":"filters.gpstimeconvert",
"conversion":"gws2gt",
"start_date":"2020-12-12",
"wrapped":true

},
"output.las"

]

Options

conversion
The time conversion. Must be one of the following: “gst2gt”, “gst2gws”, “gt2gst”,
“gt2gws”, “gws2gst”, or “gws2gt”. [Required]

start_date
When the input times are in GPS week seconds, the date on which the data collection
started must be supplied in the GMT time zone. Must be in “YYYY-MM-DD” format.
[Required for the “gws2gt” and “gws2gst” conversions]

wrap
Whether to output wrapped (true) or unwrapped (false) GPS week seconds. [Default:
false]

wrapped
Specifies whether input GPS week seconds are wrapped (true) or unwrapped (false).
[Default: false]

filters.groupby

The Groupby Filter takes a single PointView as its input and creates a PointView for each
category in the named dimension (page 331) as its output.

Default Embedded Stage

This stage is enabled by default

330 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

The following pipeline will create a set of LAS files, where each file contains only points of a
single Classification.

[
"input.las",
{

"type":"filters.groupby",
"dimension":"Classification"

},
"output_#.las"

]

Note: By default the groups are ordered according to the order of first occurance within the
input. To change this, use filters.sort first to order the points according to dimension.

Options

dimension
The dimension containing data to be grouped.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

7.5. Filters 331

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.returns

The Returns Filter takes a single PointView as its input and creates a PointView for each of
the user-specified groups (page 332) defined below.

“first” is defined as those points whose ReturnNumber is 1 when the NumberOfReturns is
greater than 1.

“intermediate” is defined as those points whose ReturnNumber is greater than 1 and less than
NumberOfReturns when NumberOfReturns is greater than 2.

“last” is defined as those points whose ReturnNumber is equal to NumberOfReturns when
NumberOfReturns is greater than 1.

“only” is defined as those points whose NumberOfReturns is 1.

Default Embedded Stage

This stage is enabled by default

Example

This example creates two separate output files for the “last” and “only” returns.

[
"input.las",
{

"type":"filters.returns",
"groups":"last,only"

},
"output_#.las"

]

Options

groups
Comma-separated list of return number groupings. Valid options are “first”, “last”,
“intermediate” or “only”. [Default: “last”]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

332 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.separatescanline

The Separate scan line Filter takes a single PointView as its input and creates a PointView
for each scan line as its output. PointView must contain the EdgeOfFlightLine dimension.

Default Embedded Stage

This stage is enabled by default

Example

The following pipeline will create a set of text files, where each file contains only 10 scan lines.

[
"input.text",
{

"type":"filters.separatescanline",
"groupby":10

},
"output_#.text"

]

Options

groupby
The number of lines to be grouped by. [Default : 1]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

7.5. Filters 333

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.gpstimeconvert (page 328)
Convert between three LAS format GPS time standards

filters.groupby (page 330)
Split data categorically by dimension.

filters.returns (page 332)
Split data by return order (e.g., ‘first’, ‘last’, ‘intermediate’, ‘only’).

filters.separatescanline (page 333)
Split data based on scan lines.

7.5.6 Join

Multiple point clouds can be joined to form a single point cloud. These filters will invalidate an
existing KD-tree.

filters.merge

The Merge Filter combines input from multiple sources into a single output. In most cases,
this happens automatically on output and use of the merge filter is unnecessary. However, there
may be special cases where merging points prior to a particular filter or writer is necessary or
desirable.

The merge filter will log a warning if its input point sets are based on different spatial
references. No checks are made to ensure that points from various sources being merged have
similar dimensions or are generally compatible.

Default Embedded Stage

This stage is enabled by default

334 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example 1

This pipeline will create an output file “output.las” that contcatenates the points from “file1”,
“file2” and “file3”. Note that the explicit use of the merge filter is unnecessary in this case
(removing the merge filter will yield the same result).

[
"file1",
"file2",
"file3",
{

"type": "filters.merge"
},
"output.las"

]

Example 2

Here are a pair of unlikely pipelines that show one way in which a merge filter might be used.
The first pipeline simply reads the input files “utm1.las”, “utm2.las” and “utm3.las”. Since the
points from each input set are carried separately through the pipeline, three files are created as
output, “out1.las”, “out2.las” and “out3.las”. “out1.las” contains the points in “utm1.las”.
“out2.las” contains the points in “utm2.las” and “out3.las” contains the points in “utm3.las”.

[
"utm1.las",
"utm2.las",
"utm3.las",
"out#.las"

]

Here is the same pipeline with a merge filter added. The merge filter will combine the points in
its input: “utm1.las” and “utm2.las”. Then the result of the merge filter is passed to the writer
along with “utm3.las”. This results in two output files: “out1.las” contains the points from
“utm1.las” and “utm2.las”, while “out2.las” contains the points from “utm3.las”.

[
"utm1.las",
"utm2.las",
{

"type" : "filters.merge"
},
"utm3.las",

(continues on next page)

7.5. Filters 335

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"out#.las"

]

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.merge (page 334)
Merge data from two different readers into a single stream.

7.5.7 Metadata

PDAL filters can be used to create new metadata. These filters will not invalidate an existing
KD-tree.

Note: filters.cpd (page 269) and filters.icp (page 272) can optionally create metadata as well,
inserting the computed transformation matrix.

filters.hexbin

A common questions for users of point clouds is what the spatial extent of a point cloud
collection is. Files generally provide only rectangular bounds, but often the points inside the
files only fill up a small percentage of the area within the bounds.

The hexbin filter reads a point stream and writes out a metadata record that contains a
boundary, expressed as a well-known text polygon. The filter counts the points in each
hexagonal area to determine if that area should be included as part of the boundary. In order to
write out the metadata record, the pdal pipeline command must be invoked using the
“–pipeline-serialization” option:

336 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 10: Hexbin output shows boundary of actual points in point buffer, not just rectangular
extents.

Streamable Stage

This stage supports streaming operations

Example 1

The following pipeline file and command produces an JSON output file containing the
pipeline’s metadata, which includes the result of running the hexbin filter:

[
"/Users/me/pdal/test/data/las/autzen_trim.las",
{

"type" : "filters.hexbin"
}

]

$ pdal pipeline hexbin-pipeline.json --metadata hexbin-out.json

{
"stages":
{

"filters.hexbin":
(continues on next page)

7.5. Filters 337

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"area": 746772.7543,
"avg_pt_per_sq_unit": 22.43269935,
"avg_pt_spacing": 2.605540869,
"boundary": "MULTIPOLYGON (((636274.38924399 848834.99817891,␣

→˓637242.52219686 848834.99817891, 637274.79329529 849226.26445367,␣
→˓637145.70890157 849338.05481789, 637242.52219686 849505.74036422,␣
→˓636016.22045656 849505.74036422, 635983.94935813 849114.47408945,␣
→˓636113.03375184 848890.89336102, 636274.38924399 848834.99817891)))",

"boundary_json": { "type": "MultiPolygon", "coordinates": [[[[␣
→˓636274.38924399, 848834.99817891], [637242.52219686, 848834.
→˓99817891], [637274.79329529, 849226.26445367], [637145.70890157,␣
→˓849338.05481789], [637242.52219686, 849505.74036422], [636016.
→˓22045656, 849505.74036422], [635983.94935813, 849114.47408945], [␣
→˓636113.03375184, 848890.89336102], [636274.38924399, 848834.
→˓99817891]]]] },

"density": 0.1473004999,
"edge_length": 0,
"estimated_edge": 111.7903642,
"hex_offsets": "MULTIPOINT (0 0, -32.2711 55.8952, 0 111.79, 64.

→˓5422 111.79, 96.8133 55.8952, 64.5422 0)",
"sample_size": 5000,
"threshold": 15

}
},
...

Example 2

As a convenience, the pdal info command will produce similar output:

$ pdal info --boundary /Users/me/test/data/las/autzen_trim.las

{
"boundary":
{
"area": 746772.7543,
"avg_pt_per_sq_unit": 22.43269935,
"avg_pt_spacing": 2.605540869,
"boundary": "MULTIPOLYGON (((636274.38924399 848834.99817891,␣

→˓637242.52219686 848834.99817891, 637274.79329529 849226.26445367,␣
(continues on next page)

338 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓637145.70890157 849338.05481789, 637242.52219686 849505.74036422,␣
→˓636016.22045656 849505.74036422, 635983.94935813 849114.47408945,␣
→˓636113.03375184 848890.89336102, 636274.38924399 848834.99817891)))",
"boundary_json": { "type": "MultiPolygon", "coordinates": [[[[␣

→˓636274.38924399, 848834.99817891], [637242.52219686, 848834.
→˓99817891], [637274.79329529, 849226.26445367], [637145.70890157,␣
→˓849338.05481789], [637242.52219686, 849505.74036422], [636016.
→˓22045656, 849505.74036422], [635983.94935813, 849114.47408945], [␣
→˓636113.03375184, 848890.89336102], [636274.38924399, 848834.
→˓99817891]]]] },
"density": 0.1473004999,
"edge_length": 0,
"estimated_edge": 111.7903642,
"hex_offsets": "MULTIPOINT (0 0, -32.2711 55.8952, 0 111.79, 64.

→˓5422 111.79, 96.8133 55.8952, 64.5422 0)",
"sample_size": 5000,
"threshold": 15

},
"filename": "\/Users\/acbell\/pdal\/test\/data\/las\/autzen_trim.las",
"pdal_version": "1.6.0 (git-version: 675afe)"

}

Options

density
Output a density tessellation as a GeoJSON FeatureCollection to the specified filename.
If no file name is provided, nothing is written.

edge_size
If not set, the hexbin filter will estimate a hex size based on a sample of the data. If set,
hexbin will use the provided size in constructing the hexbins to test.

sample_size
How many points to sample when automatically calculating the edge size? Only applies
if edge_size (page 339) is not explicitly set. [Default: 5000]

threshold
Number of points that have to fall within a hexagon boundary before it is considered “in”
the data set. [Default: 15]

precision
Minimum number of significant digits to use in writing out the well-known text of the
boundary polygon. [Default: 8]

7.5. Filters 339

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

preserve_topology
Use GEOS SimplifyPreserveTopology instead of Simplify for polygon simplification
with smooth option. [Default: true]

smooth
Use GEOS simplify operations to smooth boundary to a tolerance [Default: true]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.info

The Info filter provides simple information on a point set as metadata. It is usually invoked by
the info command, rather than by user code. The data provided includes bounds, a count of
points, dimension names, spatial reference, and points meeting a query criteria.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

[
"input.las",
{

"type":"filters.info",
"point":"1-5"

}
]

340 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

point
A comma-separated list of single point IDs or ranges of points. For example “2-6, 10,
25” selects eight points from the input set. The first point has an ID of 0. The point
(page 341) option can’t be used with the query (page 341) option. [Default: no points are
selected.]

query
A specification to retrieve points near a location. Syntax of the the query is
X,Y[,Z][/count] where ‘X’, ‘Y’ and ‘Z’ are coordinate locations mapping to the X, Y and
Z point dimension and ‘count’ is the number of points to return. If ‘count’ isn’t specified,
the 10 points nearest to the location are returned. The query (page 341) option can’t be
used with the point (page 341) option. [Default: no points are selected.]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.stats

The Stats Filter calculates the minimum, maximum and average (mean) values of dimensions.
On request it will also provide an enumeration of values of a dimension and skewness and
kurtosis.

The output of the stats filter is metadata that can be stored by writers or used through the PDAL
API. Output from the stats filter can also be quickly obtained in JSON format by using the
command “pdal info –stats”.

Note: The filter can compute both sample and population statistics. For kurtosis, the filter can
also compute standard and excess kurtosis. However, only a single value is reported for each
statistic type in metadata, and that is the sample statistic, rather than the population statistic.
For kurtosis the sample excess kurtosis is reported. This seems to match the behavior of many
other software packages.

7.5. Filters 341

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"input.las",
{

"type":"filters.stats",
"dimensions":"X,Y,Z,Classification",
"enumerate":"Classification"

},
{

"type":"writers.las",
"filename":"output.las"

}
]

Options

dimensions
A comma-separated list of dimensions whose statistics should be processed. If not
provided, statistics for all dimensions are calculated.

enumerate
A comma-separated list of dimensions whose values should be enumerated. Note that
this list does not add to the list of dimensions that may be provided in the dimensions
(page 342) option.

count
Identical to the enumerate (page 342) option, but provides a count of the number of
points in each enumerated category.

global
A comma-separated list of dimensions for which global statistics (median, mad, mode)
should be calculated.

advanced
Calculate advanced statistics (skewness, kurtosis). [Default: false]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

342 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.hexbin (page 336)
Tessellate XY domain and determine point density and/or point boundary.

filters.info (page 340)
Generate metadata about the point set, including a point count and spatial reference
information.

filters.stats (page 341)
Compute statistics about each dimension (mean, min, max, etc.).

7.5.8 Mesh

Meshes can be computed from point clouds. These filters will invalidate an existing KD-tree.

filters.delaunay

The Delaunay Filter creates a triangulated mesh fulfilling the Delaunay condition from a
collection of points.

The filter is implemented using the delaunator-cpp (https://github.com/delfrrr/delaunator-cpp)
library, a C++ port of the JavaScript Delaunator (https://github.com/mapbox/delaunator)
library.

The filter currently only supports 2D Delaunay triangulation, using the X and Y dimensions of
the point cloud.

Default Embedded Stage

This stage is enabled by default

Example

[
"input.las",
{

"type": "filters.delaunay"
},
{

"type": "writers.ply",
(continues on next page)

7.5. Filters 343

https://github.com/delfrrr/delaunator-cpp
https://github.com/mapbox/delaunator

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename": "output.ply",
"faces": true

}
]

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.greedyprojection

The Greedy Projection Filter creates a mesh (triangulation) in an attempt to reconstruct the
surface of an area from a collection of points.

GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D
points based on local 2D projections. It assumes locally smooth surfaces and relatively smooth
transitions between areas with different point densities. The algorithm itself is identical to that
used in the PCL (http://www.pointclouds.org/documentation/tutorials/greedy_projection.php)
library.

Default Embedded Stage

This stage is enabled by default

344 Chapter 7. Drivers

http://www.pointclouds.org/documentation/tutorials/greedy_projection.php

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example

[
"input.las",
{

"type": "filters.greedyprojection",
"multiplier": 2,
"radius": 10

},
{

"type":"writers.ply",
"faces":true,
"filename":"output.ply"

}
]

Options

multiplier
Nearest neighbor distance multiplier. [Required]

radius
Search radius for neighbors. [Required]

num_neighbors
Number of nearest neighbors to consider. [Required]

min_angle
Minimum angle for created triangles. [Default: 10 degrees]

max_angle
Maximum angle for created triangles. [Default: 120 degrees]

eps_angle
Maximum normal difference angle for triangulation consideration. [Default: 45 degrees]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view

7.5. Filters 345

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.poisson

The Poisson Filter passes data Mischa Kazhdan’s poisson surface reconstruction algorithm.
[Kazhdan2006] It creates a watertight surface from the original point set by creating an entirely
new point set representing the imputed isosurface. The algorithm requires normal vectors to
each point in order to run. If the x, y and z normal dimensions are present in the input point set,
they will be used by the algorithm. If they don’t exist, the poisson filter will invoke the PDAL
normal filter to create them before running.

The poisson algorithm will usually create a larger output point set than the input point set.
Because the algorithm constructs new points, data associated with the original points set will
be lost, as the algorithm has limited ability to impute associated data. However, if color
dimensions (red, green and blue) are present in the input, colors will be reconstructed in the
output point set. This filter will also run the normal filter (page 247) on the output point set.

This integration of the algorithm with PDAL only supports a limited set of the options
available to the implementation. If you need support for further options, please let us know.

Default Embedded Stage

This stage is enabled by default

Example

[
"dense.las",
{

"type":"filters.poisson"
},
{

"type":"writers.ply",
"faces":true,
"filename":"isosurface.ply"

}
]

Note: The algorithm is slow. On a reasonable desktop machine, the surface reconstruction
shown below took about 15 minutes.

346 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 11: Point cloud (800,000 points)

7.5. Filters 347

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 12: Reconstruction (1.8 million vertices, 3.7 million faces)

348 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

density
Write an estimate of neighborhood density for each point in the output set.

depth
Maximum depth of the tree used for reconstruction. The output is sensitive to this
parameter. Increase if the results appear unsatisfactory. [Default: 8]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.faceraster

The FaceRaster filter creates a raster from a point cloud using an algorithm based on an
existing triangulation. Each raster cell is given a value that is an interpolation of the known
values of the containing triangle. If the raster cell center is outside of the triangulation, it is
assigned the nodata (page 350) value. Use writers.raster to write the output.

The extent of the raster can be defined by using the origin_x (page 350), origin_y (page 350),
width (page 350) and height (page 350) options. If these options aren’t provided the raster is
sized to contain the input data.

Default Embedded Stage

This stage is enabled by default

Basic Example

This pipeline reads the file autzen_trim.las and creates a raster based on a Delaunay
trianguation of the points. It then creates a raster, interpolating values based on the vertices of
the triangle that contains each raster cell center.

7.5. Filters 349

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[
"pdal/test/data/las/autzen_trim.las",
{

"type": "filters.delaunay"
},
{

"type": "filters.faceraster",
"resolution": 2,
"width": 500,
"height": 500,
"origin_x": 636000,
"origin_y": 849000

}
]

Options

resolution
Length of raster cell edges in X/Y units. [Required]

nodata
The value to use for a raster cell if no data exists in the input data with which to compute
an output cell value. Note that this value may be different from the value used for nodata
when the raster is written. [Default: NaN]

mesh
Name of the triangulation to use for interpolation. If not provided, the first triangulation
associated with the input points will be used. [Default: None]

origin_x
X origin (lower left corner) of the grid. [Default: None]

origin_y
Y origin (lower left corner) of the grid. [Default: None]

width
Number of cells in the X direction. [Default: None]

height
Number of cells in the Y direction. [Default: None]

max_triangle_edge_length
Maximum triangle edge length; triangles larger than this size will not be rasterized.
[Default: Infinity]

where
An expression that limits points passed to a filter. Points that don’t pass the expression

350 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.delaunay (page 343)
Create mesh using Delaunay triangulation.

filters.greedyprojection (page 344)
Create mesh using the Greedy Projection Triangulation approach.

filters.poisson (page 346)
Create mesh using the Poisson surface reconstruction algorithm [Kazhdan2006].

filters.faceraster (page 349)
Create a raster from an existing triangulation.

7.5.9 Languages

PDAL has three filters than can be used to pass point clouds to other languages. These filters
will invalidate an existing KD-tree.

filters.matlab

The Matlab Filter allows Matlab (https://www.mathworks.com/products/matlab.html)
software to be embedded in a Pipeline (page 55) that interacts with a struct array of the data
and allows you to modify those points. Additionally, some global Metadata (page 551) is also
available that Matlab functions can interact with.

The Matlab interpreter must exit and always set “ans==true” upon success. If “ans==false”, an
error would be thrown and the Pipeline (page 55) exited.

See also:

writers.matlab (page 167) can be used to write .mat files.

Note: filters.matlab (page 351) embeds the entire Matlab interpreter, and it will require a fully
licensed version of Matlab to execute your script.

Dynamic Plugin

7.5. Filters 351

https://www.mathworks.com/products/matlab.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This stage requires a dynamic plugin to operate

Example

[
{

"filename": "test\/data\/las\/1.2-with-color.las",
"type": "readers.las"

},
{

"type": "filters.matlab",
"script": "matlab.m"

},
{

"filename": "out.las",
"type": "writers.las"

}
]

Options

script
When reading a function from a separate Matlab
(https://www.mathworks.com/products/matlab.html) file, the file name to read from.
[Example: “functions.m”]

source
The literal Matlab (https://www.mathworks.com/products/matlab.html) code to execute,
when the script option is not being used.

add_dimension
The name of a dimension to add to the pipeline that does not already exist.

struct
Array structure name to read [Default: “PDAL”]

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard

352 Chapter 7. Drivers

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.python

The Python Filter allows Python (http://python.org/) software to be embedded in a Pipeline
(page 55) that allows modification of PDAL points through a NumPy (http://www.numpy.org/)
array. Additionally, some global Metadata (page 551) is also available that Python functions
can interact with.

The function must have two NumPy (http://www.numpy.org/) arrays as arguments, ins and
outs. The ins array represents the points before the filters.python filter and the outs
array represents the points after filtering.

Warning: Make sure NumPy (http://www.numpy.org/) is installed in your Python
(http://python.org/) environment.

$ python3 -c "import numpy; print(numpy.__version__)"
1.18.1

Warning: Each array contains all the Dimensions (page 365) of the incoming ins point
schema. Each array in the outs list matches the NumPy (http://www.numpy.org/) array of
the same type as provided as ins for shape and type.

Dynamic Plugin

This stage requires a dynamic plugin to operate

import numpy as np

def multiply_z(ins,outs):
Z = ins['Z']
Z = Z * 10.0
outs['Z'] = Z
return True

7.5. Filters 353

http://python.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://python.org/
http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1) The function must always return True upon success. If the function returned False, an
error would be thrown and the Pipeline (page 55) exited.

2) If you want write a dimension that might not be available, you can specify it with the
add_dimension (page 358) option:

"add_dimension": "NewDimensionOne"

To create more than one dimension, this option also accepts an array:

"add_dimension": ["NewDimensionOne", "NewDimensionTwo",
→˓"NewDimensionThree"]

You can also specify the type (page 373) of the dimension using an =.

"add_dimension": "NewDimensionOne=uint8"

Modification Example

[
"file-input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.python",
"script":"multiply_z.py",
"function":"multiply_z",
"module":"anything"

},
{

"type":"writers.las",
"filename":"file-filtered.las"

}
]

The JSON pipeline file referenced the external multiply_z.py Python (http://python.org/) script,
which scales the Z coordinate by a factor of 10.

import numpy as np

def multiply_z(ins,outs):
Z = ins['Z']
Z = Z * 10.0

(continues on next page)

354 Chapter 7. Drivers

http://python.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
outs['Z'] = Z
return True

Predicates

Points can be retained/removed from the stream by setting true/false values into a special
“Mask” dimension in the output point array.

The example above sets the “mask” to true for points that are in classifications 1 or 2 and to
false otherwise, causing points that are not classified 1 or 2 to be dropped from the point stream.

import numpy as np

def filter(ins,outs):
cls = ins['Classification']

keep_classes = [1, 2]

Use the first test for our base array.
keep = np.equal(cls, keep_classes[0])

For 1:n, test each predicate and join back
to our existing predicate array
for k in range(1, len(keep_classes)):

t = np.equal(cls, keep_classes[k])
keep = keep + t

outs['Mask'] = keep
return True

Note: filters.range (page 318) is a specialized filter that implements the exact functionality
described in this Python operation. It is likely to be much faster than Python, but not as
flexible. filters.python (page 353) is the tool you can use for prototyping point stream
processing operations.

See also:

If you want to read a Pipeline (page 55) of operations into a numpy array, the PDAL Python
extension (https://pypi.python.org/pypi/PDAL) is available.

7.5. Filters 355

https://pypi.python.org/pypi/PDAL
https://pypi.python.org/pypi/PDAL

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Example pipeline

[
"file-input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.python",
"script":"filter_pdal.py",
"function":"filter",
"module":"anything"

},
{

"type":"writers.las",
"filename":"file-filtered.las"

}
]

Module Globals

Three global variables are added to the Python module as it is run to allow you to get
Dimensions (page 365), Metadata (page 551), and coordinate system information.
Additionally, the metadata object can be set by the function to modify metadata for the
in-scope filters.python (page 353) pdal::Stage (page 646).

def myfunc(ins,outs):
print('schema: ', schema)
print('srs: ', spatialreference)
print('metadata: ', metadata)
outs = ins
return True

Setting stage metadata

Note: The name of the output metadata variable has changed from metadata to
out_metadata.

Stage metadata can be created by using the out_metadata dictionary global variable. The
name key must be set. The type of the value can usually be inferred, but can be set to one of

356 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

integer, nonNegativeInteger, double, bounds, boolean, spatialreference, uuid or
string.

Children may be set using the children key whose value is a list of dictionaries.

def myfunc(ins,outs):
global out_metadata
out_metadata = {'name': 'root', 'value': 'a string', 'type': 'string',

→˓ 'description': 'a description', 'children': [{'name': 'somekey',
→˓'value': 52, 'type': 'integer', 'description': 'a filter description',
→˓ 'children': []}, {'name': 'readers.faux', 'value': 'another string',
→˓'type': 'string', 'description': 'a reader description', 'children':␣
→˓[]}]}
return True

Passing Python objects

An JSON-formatted option can be passed to the filter representing a Python dictionary
containing objects you want to use in your function. This feature is useful in situations where
you wish to call pipeline (page 41) with substitutions.

If we needed to be able to provide the Z scaling factor of Example Pipeline (page 356) with a
Python argument, we can place that in a dictionary and pass that to the filter as a separate
argument. This feature allows us to be able easily reuse the same basic Python function while
substituting values as necessary.

[
"input.las",
{

"type":"filters.python",
"module":"anything",
"function":"filter",
"script":"arguments.py",
"pdalargs":"{\"factor\":0.3048,\"an_argument\":42, \"another\":␣

→˓\"a string\"}"
},
"output.las"

]

With that option set, you can now fetch the pdalargs (page 358) dictionary in your Python
script and use it:

import numpy as np

(continues on next page)

7.5. Filters 357

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
def multiply_z(ins,outs):

Z = ins['Z']
Z = Z * float(pdalargs['factor'])
outs['Z'] = Z
return True

Standard output and error

A redirector module is available for scripts to output to PDAL’s log stream explicitly. The
module handles redirecting sys.stderr and sys.stdout for you transparently, but it can be
used directly by scripts. See the PDAL source code for more details.

Options

script
When reading a function from a separate Python (http://python.org/) file, the file name to
read from.

source
The literal Python (http://python.org/) code to execute, when the script option is not
being used.

module
The Python module that is holding the function to run. [Required]

function
The function to call. [Required]

add_dimension
A dimension name or an array of dimension names to add to the pipeline that do not
already exist.

pdalargs
A JSON dictionary of items you wish to pass into the modules globals as the pdalargs
object.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,

358 Chapter 7. Drivers

http://python.org/
http://python.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.julia

The Julia Filter allows Julia (https://julialang.org/) software to be embedded in a Pipeline
(page 55) that allows modification of PDAL points through a TypedTables
(https://github.com/JuliaData/TypedTables.jl) datatype.

The supplied julia function must take a TypedTables
(https://github.com/JuliaData/TypedTables.jl) FlexTable as an argument and return the same
object (with modifications).

Warning: The returned Table contains all the Dimensions (page 365) of the incoming ins
Table

Dynamic Plugin

This stage requires a dynamic plugin to operate

module MyModule
using TypedTables

function multiply_z(ins)
for n in 1:length(ins)
ins[n] = merge(ins[n], (; :Z => row.Z * 10.0)

end
return ins

end
end

If you want write a dimension that might not be available, you can␣
→˓specify
it with the add_dimension_ option:

::

"add_dimension": "NewDimensionOne"

(continues on next page)

7.5. Filters 359

https://julialang.org/
https://github.com/JuliaData/TypedTables.jl
https://github.com/JuliaData/TypedTables.jl

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
To create more than one dimension, this option also accepts an array:

::

"add_dimension": ["NewDimensionOne", "NewDimensionTwo",
→˓"NewDimensionThree"]

You can also specify the :ref:`type <types>` of the dimension using an␣
→˓``=``.
::

"add_dimension": "NewDimensionOne=uint8"

Filter Example

[
"file-input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.julia",
"script":"filter_z.jl",
"function":"filter_z",
"module":"MyModule"

},
{

"type":"writers.las",
"filename":"file-filtered.las"

}
]

The JSON pipeline file referenced the external filter_z.jl Julia (https://julialang.org/) script,
which removes points with the Z coordinate by less than 420.

module MyModule
using TypedTables

function filter_z(ins)
return filter(p -> p.Z > 420, ins)

(continues on next page)

360 Chapter 7. Drivers

https://julialang.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
end

end

Modification Example

[
"file-input.las",
{

"type":"filters.smrf"
},
{

"type":"filters.julia",
"script":"multiply_z.jl",
"function":"multiply_z",
"module":"MyModule"

},
{

"type":"writers.las",
"filename":"file-modified.las"

}
]

The JSON pipeline file referenced the external multiply_z.jl Julia (https://julialang.org/) script,
which scales the Z coordinate by a factor of 10.

module MyModule
using TypedTables

function multiply_z(ins)
for n in 1:length(ins)
ins[n] = merge(ins[n], (; :Z => row.Z * 10.0)

end
return ins

end
end

7.5. Filters 361

https://julialang.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Options

script
When reading a function from a separate Julia (https://julialang.org/) file, the file name to
read from.

source
The literal Julia (https://julialang.org/) code to execute, when the script option is not
being used.

module
The Julia module that is holding the function to run. [Required]

function
The function to call. [Required]

add_dimension
A dimension name or an array of dimension names to add to the pipeline that do not
already exist.

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.matlab (page 351)
Embed MATLAB software in a pipeline.

filters.python (page 353)
Embed Python software in a pipeline.

filters.julia (page 359)
Embed Julia software in a pipeline.

362 Chapter 7. Drivers

https://julialang.org/
https://julialang.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7.5.10 Other

filters.streamcallback

The Stream Callback Filter provides a simple hook for a user-specified action to occur for
each point. The stream callback filter is for use by C++ programmers extending PDAL
functionality and isn’t useful to end users.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Options

where
An expression that limits points passed to a filter. Points that don’t pass the expression
skip the stage but are available to subsequent stages in a pipeline. [Default: no filtering]

where_merge
A strategy for merging points skipped by a ‘where’ option when running in standard
mode. If true, the skipped points are added to the first point view returned by the
skipped filter. If false, skipped points are placed in their own point view. If auto,
skipped points are merged into the returned point view provided that only one point view
is returned and it has the same point count as it did when the filter was run. [Default:
auto]

filters.streamcallback (page 363)
Provide a hook for a simple point-by-point callback.

7.5. Filters 363

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

364 Chapter 7. Drivers

CHAPTER

EIGHT

DIMENSIONS

8.1 Dimensions

All point data in PDAL is stored as a set of dimensions. Dimensions have a name and a data
type. The data type is determined at runtime, but a default data type for each dimension is
listed below, along with the name of the dimension and its description.

The following table provides a list of known dimension names you can use in Filters
(page 193), Writers (page 139), and Readers (page 65).

Note: Types are default types. Stage developers should set the dimension type explicitly if the
default dimension isn’t suitable.

Name Type Description
Alpha uint16 Alpha
Amplitude float This is the ratio of the received power to the power received at the

detection limit expressed in dB
Anisotropy dou-

ble
Anisotropy of a point; larger values indicate strong variance in mul-
tiple dimensions.

Azimuth dou-
ble

Scanner azimuth

Back-
groundRa-
diation

float A measure of background radiation.

BeamDirec-
tionX

dou-
ble

Beam direction unit vector X coordinate

BeamDirec-
tionY

dou-
ble

Beam direction unit vector Y coordinate

BeamDirec-
tionZ

dou-
ble

Beam direction unit vector Z coordinate

continues on next page

365

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
BeamOriginX dou-

ble
Beam origin X coordinate of current laser shot

BeamOriginY dou-
ble

Beam origin Y coordinate of current laser shot

BeamOriginZ dou-
ble

Beam origin Z coordinate of current laser shot

Blue uint16 Blue image channel value
ClassFlags uint8 Class Flags - deprecated in favor of Syn-

thetic/KeyPoint/Withheld/Overlap
Classification uint8 ASPRS classification. 0 for no classification. See LAS specification

for details.
ClusterID int64_t ID assigned to a point by a point-clustering algorithm.
Coplanar uint8 Indicator of whether or not a point is part of a coplanar neighbor-

hood.
Curvature dou-

ble
Curvature of surface at this point

DemantkeVer-
ticality

dou-
ble

Verticality of a point; larger values indicate vertical structure (De-
mantke’s variation).

Density dou-
ble

Estimate of point density

Deviation float Difference between the shape of the reference pulse and the return
pulse. A larger value for deviation indicates larger distortion.

Dimension uint8 Dimension of the points. three types of dimensions are available
(Linear : points form a linear feature. Planar : points form a planar
surface. Complex : random group of points).

DownPosi-
tionRMS

dou-
ble

Down position RMS error

DownVeloci-
tyRMS

dou-
ble

Down velocity RMS error

EastPosition-
RMS

dou-
ble

East position RMS error

EastVeloci-
tyRMS

dou-
ble

East velocity RMS error

EchoNorm dou-
ble

Difference in shape of a return signal compared to a typical return
from a hard surface.

EchoPos dou-
ble

Difference in position of a peak of a return signal compared to a
typical return from a hard surface

EchoRange dou-
ble

Echo Range

EdgeOfFlight-
Line

uint8 Indicates the end of scanline before a direction change with a value
of 1 - 0 otherwise

continues on next page

366 Chapter 8. Dimensions

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
Eigenentropy dou-

ble
Eigenentropy of a point; small values indicate more ordered regions,
while large values indicate disorder.

Eigenvalue0 dou-
ble

Smallest eigenvalue obtained form covariance of XYZ coordinates
in k-neighborhood.

Eigenvalue1 dou-
ble

Middle eigenvalue obtained form covariance of XYZ coordinates in
k-neighborhood.

Eigenvalue2 dou-
ble

Largest eigenvalue obtained form covariance of XYZ coordinates
in k-neighborhood.

Eigenvalue-
Sum

dou-
ble

Sum of computed eigenvalues.

ElevationCen-
troid

dou-
ble

Elevation Centroid

ElevationHigh dou-
ble

Elevation High

ElevationLow dou-
ble

Elevation Low

Flag uint8 Flag
GpsTime dou-

ble
GPS time that the point was acquired

Green uint16 Green image channel value
H3 uint64 H3 index id
HeadingRMS dou-

ble
Heading RMS error

HeightAbove-
Ground

dou-
ble

Height Above Ground

Image uint16 Index of the image use for texturation.
ImgNbr uint8 Stores the number of the image from which it gets the color.
Infrared uint16 Infrared
Intensity uint16 Representation of the pulse return magnitude
InternalTime dou-

ble
Scanner’s internal time when the point was acquired, in seconds

IsPpsLocked uint8 The external PPS signal was found to be synchronized at the time
of the current laser shot.

KeyPoint uint8 ASPRS Key-Point flag. See LAS specification for details.
LatitudeCen-
troid

dou-
ble

Latitude Centroid

LatitudeHigh dou-
ble

Latitude High

LatitudeLow dou-
ble

Latitude Low

continues on next page

8.1. Dimensions 367

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
Linearity dou-

ble
Linearity of a point; larger values indicate more linear regions.

LocalOutlier-
Factor

dou-
ble

Outlier factor based on the LocalReachabilityDistance of a point’s
nearest neighbors.

LocalReacha-
bilityDistance

dou-
ble

Reachability metric based on the NNDistance of a point’s nearest
neighbors.

Longitude-
Centroid

dou-
ble

Longitude Centroid

Longitude-
High

dou-
ble

Longitude High

LongitudeLow dou-
ble

Longitude Low

LvisLfid uint64 LVIS_LFID
Mark uint8 Mark
Miniball dou-

ble
Metric capturing distance from a point to the center of the smallest
enclosing ball encapsulating k-nearest neighbors, scaled by radius
of the ball.

NNDistance dou-
ble

Distance metric related to a point’s nearest neighbors.

NormalX dou-
ble

X component of a vector normal to surface at this point

NormalY dou-
ble

Y component of a vector normal to surface at this point

NormalZ dou-
ble

Z component of a vector normal to surface at this point

NorthPosi-
tionRMS

dou-
ble

North position RMS error

NorthVeloci-
tyRMS

dou-
ble

North velocity RMS error

NumberOfRe-
turns

uint8 Total number of returns for a given pulse.

OffsetTime uint32 Milliseconds from first acquired point
Omit uint8_t Used to shallowly mark a point as being omitted without removing

it
Omnivariance dou-

ble
Omnivariance of a point; cube root of the product of all eigenvalues.

OptimalKNN uint64 Optimal number of k nearest neighbors, such that eigenentropy is
minimized.

OptimalRa-
dius

dou-
ble

Radius corresponding to optimal k nearest neighbors, such that
eigenentropy is minimized.

continues on next page

368 Chapter 8. Dimensions

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
OriginId uint32 A file source ID from which the point originated. This ID is global

to a derivative dataset which may be aggregated from multiple files.
Overlap uint8 ASPRS Overlap flag. See LAS specification for details.
PassiveSignal int32 Relative passive signal
PassiveX dou-

ble
Passive X footprint

PassiveY dou-
ble

Passive Y footprint

PassiveZ dou-
ble

Passive Z footprint

Pdop float GPS PDOP (dilution of precision)
Pitch float Pitch in degrees
PitchRMS dou-

ble
Pitch RMS error

Planarity dou-
ble

Planarity of a point; larger values indicate more planar regions.

PlaneFit dou-
ble

Metric capturing current point’s point to plane distance compared
to those in the same k-neighborhood used to estimate the plane.

PointId uint32 An explicit representation of point ordering within a file, which al-
lows this usually-implicit information to be preserved when reorder-
ing points.

PointSourceId uint16 File source ID from which the point originated. Zero indicates that
the point originated in the current file

PulseWidth float Laser received pulse width (digitizer samples)
RadialDensity dou-

ble
Estimate of radial point density

Rank uint8 Estimated rank of neighborhood of points.
Reciprocity dou-

ble
Metric capturing percentage of k-nearest neighbors that also contain
the current point in their k-neighborhood.

Red uint16 Red image channel value
Reflectance float Ratio of the received power to the power that would be received

from a white diffuse target at the same distance expressed in dB. The
reflectance represents a range independent property of the target.
The surface normal of this target is assumed to be in parallel to the
laser beam direction.

ReflectedPulse int32 Relative reflected pulse signal strength
Reliability dou-

ble
Reliability (or confidence) of points

ReturnNum-
ber

uint8 Pulse return number for a given output pulse. A given output laser
pulse can have many returns, and they must be marked in order,
starting with 1

continues on next page

8.1. Dimensions 369

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
Roll float Roll in degrees
RollRMS dou-

ble
Roll RMS error

ScanAngleR-
ank

float Angle degree at which the laser point was output from the system,
including the roll of the aircraft. The scan angle is based on being
nadir, and -90 the left side of the aircraft in the direction of flight

ScanChannel uint8 Scan Channel
ScanDirec-
tionFlag

uint8 Direction at which the scanner mirror was traveling at the time of
the output pulse. A value of 1 is a positive scan direction, and a bit
value of 0 is a negative scan direction, where positive scan direction
is a scan moving from the left side of the in-track direction to the
right side and negative the opposite

Scattering dou-
ble

Scattering of a point; larger values incidate complex (scattered) 3D
regions.

ShotNumber uint64 Shot Number
SphericalAz-
imuth

dou-
ble

Azimuth in context of spherical coordinates.

SphericalEle-
vation

dou-
ble

Elevation in context of spherical coordinates.

Spherical-
Range

dou-
ble

Range in context of spherical coordinates.

StartPulse int32 Relative pulse signal strength
SurfaceVaria-
tion

dou-
ble

Surface variation of a point; larger values indicate higher surface
variation.

Synthetic uint8 ASPRS Synthetic flag. See LAS specification for details.
TextureU dou-

ble
U component of a texture location at this point

TextureV dou-
ble

V component of a texture location at this point

TextureW dou-
ble

W component of a texture location at this point

UserData uint8 Unspecified user data
Verticality dou-

ble
Verticality of a point; larger values indicate vertical structure.

W dou-
ble

W coordinate

WanderAngle dou-
ble

Wander Angle

Withheld uint8 ASPRS Withheld flag. See LAS specification for details.
X dou-

ble
X coordinate

continues on next page

370 Chapter 8. Dimensions

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1 – continued from previous page
Name Type Description
XBodyAccel dou-

ble
X Body Acceleration

XBodyAn-
gRate

dou-
ble

X Body Angle Rate

XVelocity dou-
ble

X Velocity

Y dou-
ble

Y coordinate

YBodyAccel dou-
ble

Y Body Acceleration

YBodyAn-
gRate

dou-
ble

Y Body Angle Rate

YVelocity dou-
ble

Y Velocity

Z dou-
ble

Z coordinate

ZBodyAccel dou-
ble

Z Body Acceleration

ZBodyAn-
gRate

dou-
ble

Z Body Angle Rate

ZVelocity dou-
ble

Z Velocity

8.1. Dimensions 371

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

372 Chapter 8. Dimensions

CHAPTER

NINE

TYPES

9.1 Types

PDAL supports the standard integral and floating point types for dimensions (page 365). This
table lists the types and associated strings that can be used to describe the types in options.

Type Size
in
Bits

Text Representations

Signed Integer 8 int8, int8_t, char
Signed Integer 16 int16, int16_t, short
Signed Integer 32 int32, int32_t, int
Signed Integer 64 int64, int64_t, long
Unsigned Inte-
ger

8 uint8, uint8_t, uchar

Unsigned Inte-
ger

16 uint16, uint16_t, ushort

Unsigned Inte-
ger

32 uint32, uint32_t, uint

Unsigned Inte-
ger

64 uint64, uint64_t, ulong

Floating Point 32 float, float32
Floating Point 64 double, float64

373

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

374 Chapter 9. Types

CHAPTER

TEN

PYTHON

10.1 Python

PDAL provides Python support in two significant ways. First it embeds
(https://docs.python.org/3/extending/embedding.html) Python to allow you to write Python
programs that interact with data using filters.python (page 353) filter. Second, it extends
(https://docs.python.org/3/extending/extending.html) Python by providing an extension that
Python programmers can use to leverage PDAL capabilities in their own applications.

Note: PDAL’s Python story always revolves around Numpy (https://numpy.org) support.
PDAL’s data is provided to both the filters ands the extension as Numpy arrays.

10.1.1 Versions

PDAL supports both Python 3.5+. Continuous Integration (page 605) tests Python Linux,
OSX, and Windows.

10.1.2 Embed

PDAL allows users to embed Python functions inline with other Pipeline (page 55) processing
operations. The purpose of this capability is to allow users to write small programs that
implement interesting actions without requiring a full C++ development activity of building a
PDAL stage to implement it. A Python filter is an opportunity to interactively and iteratively
prototype a data operation without strong considerations of performance or generality. If
something works well enough, maybe one takes on the effort to formalize it, but that isn’t
necessary. PDAL’s embed of Python allows you to be as grimy as you need to get the job done.

375

https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/extending/extending.html
https://numpy.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 1: Embedding a Python function to take Z values read from a readers.las (page 89) and then
output them to a writers.bpf (page 141).

10.1.3 Extend

PDAL provides a Python extension (https://pypi.org/project/pdal/) that gives users access to
executing pipeline (page 55) instantiations and capturing the results as Numpy
(https://numpy.org) arrays. This mode of operation is useful if you are looking to have PDAL
simply act as your data format and processing handler.

Python extension users are expected to construct their own PDAL pipeline (page 55) using
Python’s json library, or whatever other libraries they wish to manipulate JSON. They then
feed it into the extension and get back the results as Numpy (https://numpy.org) arrays:

json = """
[

"1.2-with-color.las",
{

"type": "filters.sort",
"dimension": "X"

}
]
"""

import pdal
pipeline = pdal.Pipeline(json)
count = pipeline.execute()
arrays = pipeline.arrays
metadata = pipeline.metadata
log = pipeline.log

376 Chapter 10. Python

https://pypi.org/project/pdal/
https://numpy.org
https://numpy.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Installation

The PDAL Python extension requires a working PDAL installation (page 13). Unless you
choose the Conda installation method, make sure that you a current, working version of PDAL
before installing the extension.

Note: Previous to PDAL 2.1, Python support was spread across the embedded stages
(readers.numpy (page 98) and filters.python (page 353)) which were installed by PDAL itself
and the PDAL extension that was installed from PyPI. As of PDAL 2.1 and PDAL/python 2.3,
both the embedded stages and the extension are installed from PyPI.

Installation Using pip

As administrator, you can install PDAL using pip:

pip install PDAL

Note: To install pip please read here (https://pip.pypa.io/en/stable/installation/)

Installation from Source

PDAL Python support is hosted in a separate repository than PDAL itself at GitHub
(https://github.com/PDAL/python). If you have a working PDAL installation and a working
Python installation, you can install the extension using the following procedure on Unix. The
procedure on Windows is similar

$ git clone https://github.com/PDAL/python pdalextension
$ cd pdalextension
$ pip install .

Install using Conda

The PDAL Python support can also be installed using the Conda
(https://conda.io/projects/conda/en/latest/) package manager. An advantage of using Conda to
install the extension is that Conda will install PDAL. We recommend installing PDAL and the
PDAL Python extension in an environment other than the base environment. To install in an
existing environment, use the following

10.1. Python 377

https://pip.pypa.io/en/stable/installation/
https://github.com/PDAL/python
https://conda.io/projects/conda/en/latest/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

conda install -n <environment name> -c conda-forge python-pdal

Use the following command to install PDAL and the PDAL Python extension into a new
environment and activate that environment

conda create -n <environment name> -c conda-forge python-pdal
conda activate <environment name>

Note: The official pdal and python-pdal packages reside in the conda-forge channel, which
can be added via conda config or manually specified with the -c option, as shown in the
examples above.

378 Chapter 10. Python

CHAPTER

ELEVEN

JAVA

11.1 Java

PDAL provides Java bindings to use PDAL on JVM (https://github.com/PDAL/java). It is
released independently from PDAL itself as of PDAL 1.7. Native binaries are prebuilt for
Linux and MacOS and delivered in a jar, so there is no need in building PDAL with a special
flag or building JNI binaries manually.

The project consists of the following modules:

• pdal-native - with packed OS specific libraries to link PDAL to JNI proxy classes.
Dependency contains bindings for x86_64-darwin and x86_64-linux, other versions
are not supported yet.

• pdal - with the core bindings functionality.

• pdal-scala - a Scala API package that simplifies PDAL Pipeline construction.

11.1.1 Versions

PDAL JNI major version usually follows PDAL versioning i.e. pdal-java 1.8.x was built
and tested against PDAL 1.8.x and pdal-java 2.1.x against PDAL 2.x.x.

11.1.2 Using PDAL Java bindings

PDAL provides JNI bindings
(https://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html) that gives users access
to executing pipeline (page 55) instantiations and capturing the results in Java interfaces. This
mode of operation is useful if you are looking to have PDAL simply act as your data format and
processing handler.

Users are expected to construct their own PDAL pipeline (page 55), execute it, and retrieve
points into Java memory:

379

https://github.com/PDAL/java
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

import io.pdal._

val json =
"""

|{
| "pipeline":[
| {
| "filename":"1.2-with-color.las",
| "spatialreference":"EPSG:2993"
| },
| {
| "type": "filters.reprojection",
| "out_srs": "EPSG:3857"
| },
| {
| "type": "filters.delaunay"
| }
|]
|}

""".stripMargin

val pipeline = Pipeline(json)
pipeline.validate() // check if our JSON and options were good
pipeline.setLogLevel(8) // make it really noisy
pipeline.execute() // execute the pipeline
val metadata: String = pipeline.getMetadata() // retrieve metadata
val pvs: PointViewIterator = pipeline.getPointViews() // iterator over␣
→˓PointViews
val pv: PointView = pvs.next() // let's take the first PointView

// load all points into JVM memory
// PointCloud provides operations on PDAL points that
// are loaded in this case into JVM memory as a single Array[Byte]
val pointCloud: PointCloud = pv.getPointCloud()
val x: Double = pointCloud.getDouble(0, DimType.X) // get a point with␣
→˓PointId = 0 and only a single dimensions

// in some cases it is not neccesary to load everything into JVM memory
// so it is possible to get only required points directly from the␣
→˓PointView
val y: Double = pv.getDouble(0, DimType.Y)

// it is also possible to get access to the triangular mesh generated␣

(continues on next page)

380 Chapter 11. Java

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓via PDAL
val mesh: TriangularMesh = pv.getTriangularMesh()
// the output is an Array of Triangles
// Each Triangle contains PointIds from the PDAL point table
val triangles: Array[Triangle] = mesh.asArray

pv.close()
pipeline.close()

11.1.3 Using PDAL Scala

PDAL Scala project introduces a DSL to simplify PDAL Pipeline construction (this is the same
pipeline from the section above):

import io.pdal._
import io.pdal.pipeline._

val expression =
ReadLas("1.2-with-color.las", spatialreference = Some("EPSG:2993")) ~
FilterReprojection("EPSG:3857") ~
FilterDelaunay()

val pipeline = expression.toPipeline
pipeline.validate() // check if our JSON and options were good
pipeline.setLogLevel(8) // make it really noisy
pipeline.execute() // execute the pipeline
val metadata: String = pipeline.getMetadata() // retrieve metadata
val pvs: PointViewIterator = pipeline.getPointViews() // iterator over␣
→˓PointViews
val pv: PointView = pvs.next() // let's take the first PointView

// load all points into JVM memory
// PointCloud provides operations on PDAL points that
// are loaded in this case into JVM memory as a single Array[Byte]
val pointCloud: PointCloud = pv.getPointCloud()
val x: Double = pointCloud.getDouble(0, DimType.X) // get a point with␣
→˓PointId = 0 and only a single dimensions

// in some cases it is not neccesary to load everything into JVM memory
// so it is possible to get only required points directly from the␣
→˓PointView

(continues on next page)

11.1. Java 381

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
val y: Double = pv.getDouble(0, DimType.Y)

// it is also possible to get access to the triangular mesh generated␣
→˓via PDAL
val mesh: TriangularMesh = pv.getTriangularMesh()
// the output is an Array of Triangles
// Each Triangle contains PointIds from the PDAL point table
val triangles: Array[Triangle] = mesh.asArray

pv.close()
pipeline.close()

It covers PDAL 2.0.x, but to use any custom DSL that is not covered by the current Scala API
you can use RawExpr type to build a Pipeline Expression:

import io.pdal._
import io.pdal.pipeline._
import io.circe.syntax._

val pipelineWithRawExpr =
ReadLas("1.2-with-color.las") ~
RawExpr(Map("type" -> "filters.crop").asJson) ~
WriteLas("1.2-with-color-out.las")

Installation

PDAL Java artifacts are cross published for Scala 2.13, 2.12 and 2.11. However, if it is not
required, a separate artifact that has no Scala specific artifact postfix is published as well.

// pdal is published to maven central, but you can use following repos␣
→˓in addition
resolvers ++= Seq(
Resolver.sonatypeRepo("releases"),
Resolver.sonatypeRepo("snapshots") // for snaphots

)

libraryDependencies ++= Seq(
"io.pdal" %% "pdal" % "x.x.x", // core library
"io.pdal" % "pdal-native" % "x.x.x", // jni binaries
"io.pdal" %% "pdal-scala" % "x.x.x" // if scala core library (if␣

→˓required)
)

382 Chapter 11. Java

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The latest version is: https://search.maven.org/search?q=g:io.pdal

There is also an example SBT PDAL Demo project
(https://github.com/PDAL/java/tree/master/examples/pdal-jni) in the bindings repository, that
can be used for a quick start.

Compilation

Development purposes (including binaries) compilation:

1. Install PDAL (using brew / package managers (unix) / build from sources / etc)

2. Build native libs ./sbt native/nativeCompile (optionally, binaries would be
built during tests run)

3. Run ./sbt core/test to run PDAL tests

Only Java development purposes compilation:

1. Provide $LD_LIBRARY_PATH or $DYLD_LIBRARY_PATH

2. If you don’t want to provide global variable you can pass
-Djava.library.path=<path> into sbt:

./sbt -Djava.library.path=<path>

3. Set PDAL_DEPEND_ON_NATIVE=false (to disable native project build)

4. Run PDAL_DEPEND_ON_NATIVE=false ./sbt

If you would like to use your own bindings binary, it is necessary to set java.library.path:

// Mac OS X example with manual JNI installation
// cp -f native/target/resource_managed/main/native/x86_64-darwin/
→˓libpdaljni.2.1.dylib /usr/local/lib/libpdaljni.2.1.dylib
// place built binary into /usr/local/lib, and pass java.library.path␣
→˓to your JVM
javaOptions += "-Djava.library.path=/usr/local/lib"

You can use pdal-native dep in case you don’t have installed JNI bindings and to avoid steps
described above. Dependency contains bindings for x86_64-darwin and x86_64-linux,
other versions are not supported yet.

11.1. Java 383

https://search.maven.org/search?q=g:io.pdal
https://github.com/PDAL/java/tree/master/examples/pdal-jni

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

384 Chapter 11. Java

CHAPTER

TWELVE

TUTORIALS

12.1 Tutorials

This section provides a collection of tutorials on how to use the PDAL Applications (page 27)
and Pipelines (page 55) to process data.

Note: Users looking for documentation on how to contribute to PDAL should look here
(page 529) and users looking to use the PDAL API in their own applications should look here
(page 606).

12.1.1 Reading with PDAL

Author
Bradley Chambers

Contact
brad.chambers@gmail.com

Date
01/21/2015

Contents

• Reading with PDAL (page 385)

– A basic inquiry example (page 386)

– A conversion example (page 387)

∗ Metadata (page 388)

– A Pipeline Example (page 388)

385

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

∗ Simple conversion (page 388)

∗ Loop a directory and filter it through a pipeline (page 389)

This tutorial is an introduction to using PDAL to read data using pdal from the command line.

A basic inquiry example

Our first example to demonstrate PDAL’s utility will be to simply query an LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html) file to
determine the data that are in it in the very first point.

Note: The interesting.las
(https://github.com/PDAL/PDAL/blob/master/test/data/las/interesting.las?raw=true) file in
these examples can be found on github.

pdal info outputs JavaScript JSON (http://www.json.org/).

$ pdal info interesting.las -p 0

{
"filename": "interesting.las",
"pdal_version": "1.0.1 (git-version: 80644d)",
"points":
{

"point":
{

"Blue": 88,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 245381,
"Green": 77,
"Intensity": 143,
"NumberOfReturns": 1,
"PointId": 0,
"PointSourceId": 7326,
"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,
"UserData": 132,
"X": 637012,

(continues on next page)

386 Chapter 12. Tutorials

http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html
https://github.com/PDAL/PDAL/blob/master/test/data/las/interesting.las?raw=true
http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"Y": 849028,
"Z": 431.66

}
}

}

A conversion example

Conversion of data from one format to another may be lossy, in that some data in the source
format may not be representable in the same format or at all in the destination format. For
example, some formats don’t support spatial references for point data, some have no metadata
support and others have limited dimension (page 365) support. Even when data types are
supported in both source and destination formats, there may be limitations with regard to data
type, precision or, scaling. PDAL attempts to convert data as accurately as possible, but you
should make sure that you’re aware of the capabilities of the data formats you’re using.

$ pdal translate interesting.las output.txt

"X","Y","Z","Intensity","ReturnNumber","NumberOfReturns",
→˓"ScanDirectionFlag","EdgeOfFlightLine","Classification","ScanAngleRank
→˓","UserData","PointSourceId","Time","Red","Green","Blue"
637012.24,849028.31,431.66,143,1,1,1,0,1,-9,132,7326,245381,68,77,88
636896.33,849087.70,446.39,18,1,2,1,0,1,-11,128,7326,245381,54,66,68
636784.74,849106.66,426.71,118,1,1,0,0,1,-10,122,7326,245382,112,97,114
636699.38,848991.01,425.39,100,1,1,0,0,1,-6,124,7326,245383,178,138,162
636601.87,849018.60,425.10,124,1,1,1,0,1,-4,126,7326,245383,134,104,134
636451.97,849250.59,435.17,48,1,1,0,0,1,-9,122,7326,245384,99,85,95
...

The text format supports all point attributes, but provides no support for metadata such as the
input spatial reference system or the LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html) header
fields, such as UUID (http://en.wikipedia.org/wiki/Universally_unique_identifier). You may
need to preserve some more information as part of your conversion to make it useful down the
road.

12.1. Tutorials 387

http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html
http://en.wikipedia.org/wiki/Universally_unique_identifier

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Metadata

PDAL carries metadata (page 551) for each stage through the PDAL processing pipeline
(page 55). The metadata can be written in JSON form using the pdal info (page 38) command

$ pdal info --metadata interesting.las

This produces metadata that looks like this. You can use your JSON (http://www.json.org/)
manipulation tools to extract this information. For formats that do not have the ability to
preserve this metadata internally, you can keep a .json file alongside the .txt file as auxiliary
information.

A Pipeline Example

The full power of PDAL comes in the form of pipeline (page 41) invocations. Pipelines allow
you to take advantage of PDAL’s ability to manipulate data as they are converted. This section
will provide a basic example and demonstration of pipeline usage. See the pipeline
specification (page 55), for more detailed exposition of the topic.

The pipeline (page 41) describes a series of processing stages to be performed in JSON format.
Each stage can be provided a set of options that control the details of processing. PDAL is
single-threaded and stages are executed in a linear order. Some stages support what is known as
“stream mode”. If all stages in a pipeline support stream mode the command is run using using
stream mode to reduce the memory processing footprint. Even when run in stream mode,
execution is single-threaded and can be thought of as linear.

Simple conversion

The following JSON (http://www.json.org/) document defines a pipeline that takes the
file.las LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html) file and
converts it to a new file called output.las.

[
"file.las",
"output.las"

]

388 Chapter 12. Tutorials

../_images/info-interesting-metadata.png
http://www.json.org/
http://www.json.org/
http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Loop a directory and filter it through a pipeline

This bash script loops through a directory and pushes the las files through a pipeline,
substituting the input and output as it goes.

ls *.las | cut -d. -f1 | xargs -P20 -I{} pdal pipeline -i /path/to/proj.
→˓json --readers.las.filename={}.las --writers.las.filename=output/{}.
→˓laz

Here is an example doing something similar with Windows PowerShell

$indir="Documents\inlas"
$outdir="Documents\outlas"
get-childitem $indir |
foreach-object {

if ($_.extension -ne ".las") {
continue

}
$outname = $outdir + "\" + $_.name
pdal pipeline -i \path\to\proj.json $_.fullname $outname

}

12.1.2 Reading data from EPT

Introduction

This tutorial describes how to use Conda (https://conda.io), Entwine (https://entwine.io),
PDAL (https://pdal.io), and GDAL (https://gdal.org) to read data from the USGS 3DEP AWS
Public Dataset (https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-
amazon-public-dataset). We will be using PDAL’s readers.ept
(https://pdal.io/stages/readers.ept.html) to fetch data, we will filter it for noise using
filters.outlier (https://pdal.io/stages/filters.outlier.html), we will classify the data as
ground/not-ground using filters.smrf (https://pdal.io/stages/filters.smrf.html), and we will write
out a digital terrain model with writers.gdal (page 156). Once our elevation model is
constructed, we will use GDAL gdaldem (https://www.gdal.org/gdaldem.html) operations to
create hillshade, slope, and color relief.

12.1. Tutorials 389

https://conda.io
https://entwine.io
https://pdal.io
https://gdal.org
https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset
https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset
https://pdal.io/stages/readers.ept.html
https://pdal.io/stages/filters.outlier.html
https://pdal.io/stages/filters.smrf.html
https://www.gdal.org/gdaldem.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Install Conda

We first need to install PDAL, and the most convenient way to do that is by installing
Miniconda (https://docs.conda.io/en/latest/miniconda.html). Select the 64-bit installer for your
platform and install it as directed.

Install PDAL

Once Miniconda is installed, we can install PDAL into a new Conda Environment
(https://docs.conda.io/projects/conda/en/latest/user-guide/concepts.html) that we created for
this tutorial. Open your Anaconda Shell and start issuing the following commands:

1. Create the environment

conda create -n iowa -y

2. Activate the environment

conda activate iowa

3. Install PDAL

conda install -c conda-forge pdal -y

4. Ensure PDAL works by listing the available drivers

pdal --drivers

(iowa) [hobu@kasai ~]$ pdal --drivers

Once you confirmed you see output similar to that in your shell, your PDAL installation should
be good to go.

Write the Pipeline

PDAL uses the concept of pipelines (https://pdal.io/pipeline.html) to describe the reading,
filtering, and writing of point cloud data. We will construct a pipeline that will do a number of
things in succession.

390 Chapter 12. Tutorials

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts.html
https://pdal.io/pipeline.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 1: Pipeline diagram. The data are read from the Entwine Point Tile
(https://entwine.io/entwine-point-tile.html) resource at https://usgs.entwine.io for Iowa us-
ing readers.ept (page 72) and filtered through a number of steps until processing is complete.
The data are then written to an iowa.laz and iowa.tif file.

12.1. Tutorials 391

https://entwine.io/entwine-point-tile.html
https://usgs.entwine.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Pipeline

1. Create a file called iowa.json with the following content:

Note: The file is also available from
https://gist.github.com/hobu/ee22084e24ed7e3c0d10600798a94c31 for convenient
copy/paste)

{
"pipeline": [

{
"bounds": "([-10425171.940, -10423171.940], [5164494.710, 5166494.710])
→˓",
"filename": "https://s3-us-west-2.amazonaws.com/usgs-lidar-public/IA_
→˓FullState/ept.json",
"type": "readers.ept",
"tag": "readdata"

},
{

"limits": "Classification![7:7]",
"type": "filters.range",
"tag": "nonoise"

},
{

"assignment": "Classification[:]=0",
"tag": "wipeclasses",
"type": "filters.assign"

},
{

"out_srs": "EPSG:26915",
"tag": "reprojectUTM",
"type": "filters.reprojection"

},
{

"tag": "groundify",
"type": "filters.smrf"

},
{

"limits": "Classification[2:2]",
"type": "filters.range",
"tag": "classify"

},
(continues on next page)

392 Chapter 12. Tutorials

https://gist.github.com/hobu/ee22084e24ed7e3c0d10600798a94c31

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"filename": "iowa.laz",
"inputs": ["classify"],
"tag": "writerslas",
"type": "writers.las"

},
{

"filename": "iowa.tif",
"gdalopts": "tiled=yes, compress=deflate",
"inputs": ["writerslas"],
"nodata": -9999,
"output_type": "idw",
"resolution": 1,
"type": "writers.gdal",
"window_size": 6

}
]

}

Stages

readers.ept

readers.ept (page 72) reads the point cloud data from the EPT resource on AWS. We give it a
URL to the root of the resource in the filename option, and we also give it a bounds object to
define the window in which we should select data from.

Note: The full URL to the EPT root file (ept.json)) must be given to the filename parameter
for PDAL 2.2+. This was a change in behavior of the readers.ept (page 72) driver.

The bounds object is in the form ([minx, maxx], [miny, maxy]).

Warning: If you do not define a bounds option, PDAL will try to read the data for the
entire state of Iowa, which is about 160 billion points. Maybe you have enough memory for
this. . .

12.1. Tutorials 393

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 2: The EPT reader reads data from an EPT resource with PDAL. Options available in PDAL
1.9+ allow users to select data at or above specified resolutions.

filters.range

The data we are selecting may have noise properly classified, and we can use filters.range
(page 318) to keep all data that does not have a Classification Dimensions (page 365) value
of 7.

Fig. 3: The filters.range (page 318) filter utilizes range selection to allow users to select data for
processing or removal. The filters.mongo (page 315) filter can be used for even more complex
logic operations.

filters.assign

After removing points that have noise classifications, we need to reset all of the classification
values in the point data. filters.assign (page 257) takes the expression Classification
[:]=0 and assigns the Classification for each point to 0.

Fig. 4: filters.assign (page 257) can also take in an option to apply assignments based on a
conditional. If you want to assign values based on a bounding geometry, use filters.overlay
(page 260).

394 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

filters.reprojection

The data on the AWS 3DEP Public Dataset are stored in Web Mercator
(https://en.wikipedia.org/wiki/Web_Mercator_projection) coordinate system, which is not
suitable for many operations. We need to reproject them into an appropriate UTM coordinate
system (EPSG:26915 (https://epsg.io/32615)).

Fig. 5: filters.reprojection (page 280) can also take override the incoming coordinate system
using the a_srs option.

filters.smrf

The Simple Morphological Filter (filters.smrf (page 198)) classifies points as ground or
not-ground.

Fig. 6: filters.smrf (page 198) provides a number of tuning options, but the defaults tend to work
quite well for mixed urban environments on flat ground (ie, Iowa).

filters.range

After we have executed the SMRF filter, we only want to keep points that are actually classified
as ground in our point stream. Selecting for points with Classification[2:2] does that for
us.

Fig. 7: Remove any point that is not ground classification for our DTM generation.

12.1. Tutorials 395

https://en.wikipedia.org/wiki/Web_Mercator_projection
https://epsg.io/32615

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

writers.gdal

Having filtered our point data, we’re now ready to write a raster digital terrain model with
writers.gdal (page 156). Interesting options we choose here are to set the nodata value,
specify only outputting the inverse distance weighted raster, and assigning a resolution of 1
(m). See writers.gdal (page 156) for more options.

Fig. 8: Output a DTM at 1m resolution.

writers.las

We can also write a LAZ file containing the same points that were used to make the elevation
model in the section above. See writers.las (page 162) for more options.

Fig. 9: Also output the LAZ file as part of our processing pipeline.

Execute the Pipeline

1. Save the PDAL pipeline in Pipeline (page 392) to a file called iowa.json

2. Invoke the PDAL pipeline (https://pdal.io/pipeline.html) command

pdal pipeline iowa.json

Add the --debug option if you would like information about how PDAL is fetching and
processing the data.

pdal pipeline iowa.json --debug

3. Save a color scheme to dem-colors.txt

396 Chapter 12. Tutorials

https://pdal.io/pipeline.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Color ramp for Iowa State Campus
270.187,250,250,250,255,270.2
272.059,230,230,230,255,272.1
272.835,209,209,209,255,272.8
273.985,189,189,189,255,274
276.204,168,168,168,255,276.2
277.835,148,148,148,255,277.8
279.199,128,128,128,255,279.2
280.964,107,107,107,255,281
282.809,87,87,87,255,282.8
283.745,66,66,66,255,283.7
284.547,46,46,46,255,284.5
286.526,159,223,250,255,286.5
296.901,94,139,156,255,296.9

4. Invoke gdaldem to colorize a PNG file for your TIFF

gdaldem color-relief iowa.tif dem-colors.txt iowa-color.png

5. View your raster

12.1.3 LAS Reading and Writing with PDAL

Author
Howard Butler

Contact
howard@hobu.co

Date
3/27/2017

Table of Contents

• LAS Reading and Writing with PDAL (page 397)

– Introduction (page 398)

– LAS Versions (page 398)

– Spatial Reference System (page 399)

– Point Formats (page 402)

12.1. Tutorials 397

mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

– Extra Dimensions (page 403)

– Required Header Fields (page 404)

– Coordinate Scaling (page 405)

– Compression (page 406)

– PDAL Metadata (page 408)

This tutorial will describe reading and writing ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data with PDAL, discuss the capabilities that PDAL readers.las (page 89) and writers.las
(page 162) can provide for this format.

Introduction

ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
is probably the most commonly used LiDAR (https://en.wikipedia.org/wiki/Lidar) format, and
PDAL’s support of LAS is important for many users of the library. This tutorial describes and
demonstrates some of the capabilities the drivers provide, points out items to be aware of when
using the drivers, and hopefully provides some examples you can use to get what you need out
of the LAS drivers.

LAS Versions

There are five LAS versions – 1.0 to 1.4. Each iteration added some complexity to the format in
terms of capabilities it supports, possible data types it stores, and metadata. Users of LAS must
balance the features they need with the use of the data by downstream applications. While LAS
support in some form is quite widespread throughout the industry, most applications do not
support every feature of each version. PDAL works to provide many of these features, but it is
also incomplete. Specifically, PDAL doesn’t support point formats that store waveform data.

Version Example

We can use the minor_version option of writers.las (page 162) to set the version PDAL
should output. The following example will write a 1.1 version LAS file. Depending on the
features you need, this may or may not be what you want.

1 [
2 {
3 "type" : "readers.las",

(continues on next page)

398 Chapter 12. Tutorials

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
https://en.wikipedia.org/wiki/Lidar

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "minor_version": 1,
9 "filename" : "output.las"

10 }
11]

Note: PDAL defaults to writing a LAS 1.2 version if no minor_version is specified or the
forward option of writers.las (page 162) is not used to carry along a version from a previously
read file.

Spatial Reference System

LAS 1.0 to 1.3 use GeoTIFF (https://trac.osgeo.org/geotiff/) keys for storing coordinate system
information, while LAS 1.4 uses Well Known Text
(https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems). GeoTIFF is
well-supported by most software that read LAS, but it is not possible to express some
coordinate system specifics with GeoTIFF. WKT is supports more coordinate systems than
GeoTIFF, but vendor-specific and later versions (WKT 2) may not be handled well.

Assignment Example

The PDAL writers.las (page 162) allows you to override or assign the coordinate system to an
explicit value if you need. Often the coordinate system defined by a file might be incorrect or
non-existent, and you can set this with PDAL.

The following example sets the a_srs option of the writers.las (page 162) to EPSG:4326.

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "a_srs": "EPSG:4326",
9 "filename" : "output.las"

(continues on next page)

12.1. Tutorials 399

https://trac.osgeo.org/geotiff/
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
10 }
11]

Note: Remember to set offset_x, offset_y, scale_x, and scale_y values to something
appropriate if your are storing decimal degree data in LAS files. The special value auto can be
used for the offset values, but you should set an explicit value for the scale values to prevent
overdriving the precision of the data and disrupting Compression (page 406) with LASzip
(http://laszip.org).

Vertical Datum Example

Vertical coordinate control is important in LiDAR (https://en.wikipedia.org/wiki/Lidar) and
PDAL supports assignment and reprojection/transform of vertical coordinates using Proj.4
(http://proj4.org) and GDAL (http://gdal.org/). The coordinate system description magic
happens in GDAL, and you assign a compound coordinate system (both vertical and horizontal
definitions) using the following syntax:

EPSG:4326+3855

This assignment states typical 4326 horizontal coordinate system plus a vertical one that
represents EGM08
(http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html). In Well
Known Text (https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems),
this coordinate system is described by:

$ gdalsrsinfo "EPSG:4326+3855"

COMPD_CS["WGS 84 + EGM2008 geoid height",
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]],
VERT_CS["EGM2008 geoid height",

VERT_DATUM["EGM2008 geoid",2005,
(continues on next page)

400 Chapter 12. Tutorials

http://laszip.org
https://en.wikipedia.org/wiki/Lidar
http://proj4.org
http://gdal.org/
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
AUTHORITY["EPSG","1027"],
EXTENSION["PROJ4_GRIDS","egm08_25.gtx"]],

UNIT["metre",1,
AUTHORITY["EPSG","9001"]],

AXIS["Up",UP],
AUTHORITY["EPSG","3855"]]

As in Assignment Example (page 399), it is common to need to reassign the coordinate system.
The following example defines both the horizontal and vertical coordinate system for a file to
UTM Zone 15N NAD83 (http://epsg.io/26915) for horizontal and NAVD88
(http://epsg.io/5703) for the vertical.

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "a_srs": "EPSG:26915+5703",
9 "filename" : "output.las"

10 }
11]

Note: Any coordinate system description format supported by GDAL’s SetFromUserInput
(http://www.gdal.org/ogr__srs__api_8h.html#a927749db01cec3af8aa5e577d032956bk)
method can be used to assign or set the coordinate system in PDAL. This includes WKT, Proj.4
(http://proj4.org) definitions, or OGC URNs. It is your responsibility, however, to escape or
massage any input data to make it be valid JSON.

Reprojection Example

A common desire is to transform the coordinates of an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
file from one coordinate system to another. The mechanism to do that with PDAL is
filters.reprojection (page 280).

1 [
2 {
3 "type" : "readers.las",

(continues on next page)

12.1. Tutorials 401

http://epsg.io/26915
http://epsg.io/5703
http://www.gdal.org/ogr__srs__api_8h.html#a927749db01cec3af8aa5e577d032956bk
http://proj4.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
4 "filename" : "input.las"
5 },
6 {
7 "type":"filters.reprojection",
8 "out_srs":"EPSG:26915"
9 },

10 {
11 "type" : "writers.las",
12 "filename" : "output.las"
13 }
14]

Note: If the input data doesn’t specify a projection, you must specify the in_srs option of
filters.reprojection (page 280). in_srs can also be used to override an existing spatial
reference attached to the input point set.

Point Formats

As each revision of LAS was released, more point formats were added. A point format is the
fixed set of dimensions (page 365) that a LAS file stores for each point in the file. For any point
format, the size and composition of dimensions is consistent across versions, but users should
be aware of some minor interpretation changes based on LAS file version. For example, a
classification value of 11 in version 1.4 indicates “Road Surface”, while that value is reserved
in version 1.1.

Point Format Example

Point format or dataformat_id is an integer that defines the set of fixed dimensions (page 365)
stored for each point in a LAS file. All point formats specify the following dimensions as part
of a point record:

Table 1: Base LAS Dimensions

X Y Z
Intensity ReturnNumber NumberOfReturns
ScanDirectionFlag EdgeOfFlightLine Classification
ScanAngleRank UserData PointSourceId

Because LAS files have no built-in compression, it’s important to use a point format that stores
the fewest fields possible that store the desired data. For example, point format 10 uses 45 more

402 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

bytes per point than point format zero.

If one wanted remove the Red/Green/Blue fields from a LAS file (one using point format 2),
one could simply set the dataformat_id option to 0. The forward option can also be set to
carry forward all possible header values from the source file to the new, smaller file.

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "forward": "all",
9 "dataformat_id": 0,

10 "filename" : "output.las"
11 }
12]

Note: The LASzip (http://laszip.org) storage of GPSTime and Red/Green/Blue fields with no
data is perfectly efficient.

Extra Dimensions

A LAS Point Format ID defines the fixed set of dimensions (page 365) a file must store, but
programs are allowed to store extra data beyond that fixed set. This feature of the format was
regularized in LAS 1.4 as something called “extra bytes” or “extra dims”, but previous versions
can also store these extra per-point attributes.

Extra Dimension Example

LAS 1.4 provides for the storage of dimensions not part of the chosen point format by
appending them to each point record. PDAL supports this feature when writing files with the
“extra_dims” option. The following example will store all source dimensions in the output file
and place a description of the dimensions that aren’t part of the point format in an “extra bytes”
VLR:

1 [
2 "some_non_las_file",
3 {
4 "type" : "writers.las",

(continues on next page)

12.1. Tutorials 403

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
5 "extra_dims": "all",
6 "minor_version" : "4",
7 "filename" : "output.las"
8 }
9]

Required Header Fields

Readers of the ASPRS LAS Specification will see there are many fields that softwares are
required to write, with their content mandated by various options and configurations in the
format. PDAL does not assume responsibility for writing these fields and coercing meaning
from the content to fit the specification. It is the PDAL users’ responsibility to do so. Fields
where this might matter include:

• project_id

• global_encoding

• system_id

• software_id

• filesource_id

Header Fields Example

The “forward” option of writers.las (page 162) is the easiest way to get most of what you might
want in terms of header settings copied from an input to an output file upon processing.
Imagine the scenario of zero’ing out the classification values for an LAS file in preparation for
using filters.pmf (page 195) to reassign them. During this scenario, we’d like to keep all of the
other LAS header information, such as Variable Length Records (page 407), extent
information, and format settings.

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "filters.assign",
8 "assignment" : "Classification[0:32]=0"
9 },

10 {
(continues on next page)

404 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
11 "type" : "filters.pmf",
12 "cell_size" : 2.5,
13 "approximate" : false,
14 "max_distance" : 25
15 },
16 {
17 "type" : "writers.las",
18 "forward": "all",
19 "filename" : "output.las"
20 }
21]

Note: If multiple input LAS files are being written to an output file, the forward option can
only preserve values when they are the same in all input files. If the values differ, a default will
be used (as it would if the forward option weren’t supplied). You can specify specific option
values for output that will also override any forwarded data.

Coordinate Scaling

LAS stores coordinates as 32 bit integers. It is the user’s responsibility to ensure that the
coordinate domain required by the data in the file fits within the 32 bit integer domain. Most
coordinate values have digits to the right of the decimal point that must be preserved for
sufficient accuracy. Using the scale factor allows for integers to be interpreted as floating point
values when read by software.

When writing data to LAS, choosing an appropriate scale factor should take into account not
just the maximum precision that can be accommodated by the format, but the actual precision
of the data. Using a precision greater than the resolution of the data collection can mislead
users as to the actual measurement precision of the data. In addition, it can lead to larger files
when writing compressed data with LASzip (http://laszip.org).

Auto Offset Example

Users can allow PDAL select scale and offset values for data with the auto option. This can
have some detrimental effects on downstream processing. auto for scale values will use the
entire 32-bit integer domain. This maximizes the precision available to store the data, but this
will have a detrimental effect on LASzip (http://laszip.org) storage efficiency. auto for offset
calculation is just fine, however. When given the option, choose to store ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)

12.1. Tutorials 405

http://laszip.org
http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

data with an explicit scale for the X, Y, and Z dimensions that represents actual expected data
precision, not artificial storage precision or maximal storage precision.

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "scale_x":"0.0000001",
9 "scale_y":"0.0000001",

10 "scale_z":"0.01",
11 "offset_x":"auto",
12 "offset_y":"auto",
13 "offset_z":"auto",
14 "filename" : "output.las"
15 }
16]

Compression

LASzip (http://laszip.org) is an open source, lossless compression technique for ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data. It is supported by two different software libraries, and it can be used in both the C/C++
and the JavaScript execution environments. LAZ support is provided by both readers.las
(page 89) and writers.las (page 162). It can be enabled by setting the compression option to
laszip.

Compression Example

Providing a filename with a .laz extension will write compressed data. Compression can be
turned on explicitly as well:

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",
8 "compression":"laszip",

(continues on next page)

406 Chapter 12. Tutorials

http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
9 "filename" : "output.laz"

10 }
11]

Variable Length Records

Variable Length Records, or VLRs, are binary data that the LAS format supports to allow
applications to store their own data. Coordinate system information is one type of data stored in
VLRs, and many different LAS-using applications store data and metadata with this format
capability. PDAL allows users to access VLR information, forward it along to newly written
files, and create VLRs that store processing history information.

Common VLR data include:

• Coordinate system

• Metadata

• Processing history

• Indexing

Note: There are VLRs that are defined by the specification, and they have the VLR user_id
of LASF_Spec or LASF_Projection. LASF_Spec VLRs provide a description of the data
beyond that available in the header. LASF_Projection VLRs store the spatial coordinate system
of the data.

For LAS 1.0-1.3, the VLR length could be no larger than 65535 bytes. Version 1.4 introduced
extended VLRs, stored at the end of the file, which could be up to 4gb in size.

VLR Example

You can add your own VLRs to files to store processing information or whatever you want by
providing a JSON block via writers.las (page 162) vlrs option that defines the user_id and
data items for the VLR. The data option must be base64
(https://en.wikipedia.org/wiki/Base64)-encoded string output. The data will be converted to
binary information and stored in the VLR when the file is written.

[
"input.las",
{

"type":"writers.las",
(continues on next page)

12.1. Tutorials 407

https://en.wikipedia.org/wiki/Base64

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"filename":"output.las",
"vlrs": [{

"description": "A description under 32 bytes",
"record_id": 42,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21lIHRleHQ="
},
{
"description": "A description under 32 bytes",
"record_id": 43,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21lIG1vcmUgdGV4dA=="
}

]
}

]

PDAL Metadata

The writers.las (page 162) driver supports an option, pdal_metadata, that writes two PDAL
VLRs to LAS files. The first is the equivalent of info (page 38)’s --metadata output. The
second is a copy of the output of the --pipeline serialization option that describes all stages
and options of the pipeline that created the file. These two VLRs may be useful in tracking
down processing history of data, allow you to determine which versions of PDAL may have
written a file and what filter options were set when it was written, and give you the ability to
store metadata and other information via pipeline user_data from your own applications.

Metadata Example

The pipeline used to construct the file and all of its Metadata (page 551) can be written into
VLRs in ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
files under the PDAL VLR key (http://www.asprs.org/misc/las-key-list.html).

1 [
2 {
3 "type" : "readers.las",
4 "filename" : "input.las"
5 },
6 {
7 "type" : "writers.las",

(continues on next page)

408 Chapter 12. Tutorials

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://www.asprs.org/misc/las-key-list.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
8 "pdal_metadata":"true",
9 "filename" : "output.laz"

10 }
11]

Warning: LAS versions prior to 1.4 only support VLRs of at most 64K of information. It
is possible, though improbable, that the metadata or pipeline stored in the VLRs will not fit
in that space.

12.1.4 Clipping with Geometries

Author
Howard Butler

Contact
howard@hobu.co

Date
11/09/2015

Introduction

This tutorial describes how to construct a pipeline that takes in geometries and clips out data
with given geometry attributes. It is common to desire to cut or clip point cloud data with 2D
geometries, often from auxiliary data sources such as OGR (http://www.gdal.org)-readable
Shapefiles (https://en.wikipedia.org/wiki/Shapefile). This tutorial describes how to construct a
pipeline that takes in geometries and clips out point cloud data inside geometries with matching
attributes.

Contents

• Clipping with Geometries (page 409)

– Introduction (page 409)

– Example Data (page 410)

– Stage Operations (page 410)

– Data Preparation (page 410)

– Pipeline (page 411)

12.1. Tutorials 409

mailto:howard@hobu.co
http://www.gdal.org
https://en.wikipedia.org/wiki/Shapefile

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

– Processing (page 413)

– Conclusion (page 413)

Example Data

This tutorial utilizes the Autzen dataset. In addition to typical PDAL software (fetch it from
Download (page 13)), you will need to download the following two files:

• https://github.com/PDAL/data/autzen/autzen.laz

• https://github.com/PDAL/PDAL/raw/master/test/data/autzen/attributes.json

Stage Operations

This operation depends on two stages PDAL provides. The first is the filters.overlay (page 260)
stage, which allows you to assign point values based on polygons read from OGR
(http://www.gdal.org). The second is filters.range (page 318), which allows you to keep or
reject points from the set that match given criteria.

See also:

filters.python (page 353) allow you to construct sophisticated logic for keeping or rejecting
points in a more expressive environment.

Data Preparation

Fig. 10: Autzen Stadium, a 100 million+ point cloud file.

410 Chapter 12. Tutorials

https://github.com/PDAL/data/autzen/autzen.laz
https://github.com/PDAL/PDAL/raw/master/test/data/autzen/attributes.json
http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The data are mixed in two different coordinate systems. The LAZ (page 89) file is in Oregon
State Plane Ft.
(http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx) and
the GeoJSON (http://geojson.org) defining the polygons is in EPSG:4326 (http://epsg.io/4326).
We have two options – project the point cloud into the coordinate system of the attribute
polygons, or project the attribute polygons into the coordinate system of the points. The latter is
preferable in this case because it will be less math and therefore less computation. To make it
convenient, we can utilize OGR (http://www.gdal.org)’s VRT
(http://www.gdal.org/drv_vrt.html) capability to reproject the data for us on-the-fly:

<OGRVRTDataSource>
<OGRVRTWarpedLayer>

<OGRVRTLayer name="OGRGeoJSON">
<SrcDataSource>attributes.json</SrcDataSource>
<LayerSRS>EPSG:4326</LayerSRS>

</OGRVRTLayer>
<TargetSRS>+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-

→˓120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_defs</
→˓TargetSRS>
</OGRVRTWarpedLayer>

</OGRVRTDataSource>

Note: The GeoJSON file does not have an externally-defined coordinate system, so we are
explicitly setting one with the LayerSRS parameter. If your data does have coordinate system
information, you don’t need to do that.

Save this VRT definition to a file, called attributes.vrt in the same location where you
stored the autzen.laz and attributes.json files.

The attribute GeoJSON file has a couple of features with different attributes. For our scenario,
we want to clip out the yellow-green polygon, marked number “5”, in the upper right hand
corner.

Pipeline

A PDAL pipeline (page 55) is how you define a set of actions to apply to data as they are read,
filtered, and written.

[
"autzen.laz",
{
"type":"filters.overlay",
"dimension":"Classification",

(continues on next page)

12.1. Tutorials 411

http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://geojson.org
http://epsg.io/4326
http://www.gdal.org
http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 11: We want to clip out the polygon in the upper right hand corner. We can view the
GeoJSON (http://geojson.org) geometry using something like QGIS (http://qgis.org)

(continued from previous page)
"datasource":"attributes.vrt",
"layer":"OGRGeoJSON",
"column":"CLS"

},
{
"type":"filters.range",
"limits":"Classification[5:5]"

},
"output.las"

]

• readers.las (page 89): Define a reader that can read ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) or LASzip (http://laszip.org) data.

• filters.overlay (page 260): Using the VRT we defined in Data Preparation (page 410),
read attribute polygons out of the data source and assign the values from the CLS column
to the Classification field.

• filters.range (page 318): Given that we have set the Classification values for the
points that have coincident polygons to 2, 5, and 6, only keep Classification values in
the range of 5:5. This functionally means we’re only keeping those points with a
classification value of 5.

• writers.las (page 162): write our content out using an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) writer.

412 Chapter 12. Tutorials

http://geojson.org
http://qgis.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: You don’t have to use only Classification to set the attributes with filters.overlay
(page 260). Any valid dimension name could work, but most LiDAR softwares will display
categorical coloring for the Classification field, and we can leverage that behavior in this
scenario.

Processing

1) Save the pipeline to a file called shape-clip.json in the same directory as your
attributes.json and autzen.laz files.

2) Run pdal pipeline on the json file.

$ pdal pipeline shape-clip.json

3) Visualize output.las in an environment capable of viewing it. http://plas.io or
CloudCompare (http://www.danielgm.net/cc/) should do the trick.

Conclusion

PDAL allows the composition of point cloud operations. This tutorial demonstrated how to use
the filters.overlay (page 260) and filters.range (page 318) stages to clip points with shapefiles.

12.1. Tutorials 413

http://plas.io
http://www.danielgm.net/cc/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

12.1.5 Ground Filter Tutorial

Author
Bradley Chambers

Contact
brad.chambers@gmail.com

Date
04/17/2017

Background

In previous tutorials we introduced our implementation of the Progressive Morphological
Filter (PMF) (page 195), a ground kernel (page 33) to simplify command-line access to PMF,
and a filter for removing outliers (page 206).

This tutorial will highlight some recent enhancements to the PDAL library, in the context of a
ground segmentation workflow. Specifically, we will discuss:

• Constructing and executing a “filters-only” pipeline

• Resetting existing classifications prior to processing

• Using Extended Local Minimum (ELM) to identify low outliers

• Using Simple Morphological Filter (SMRF) as an alternative to PMF

• Ignoring outliers during ground segmentation

• Considering only last returns during ground segmentation

• Extracting ground returns as a post-processing step

Note: The pipeline discussed in this tutorial requires PDAL v1.5
(https://github.com/PDAL/PDAL/releases/tag/1.5.0).

The Pipeline

Begin by creating a new file called pipeline.json with the following contents.

1 {
2 "pipeline":[
3 {
4 "type":"filters.reprojection",
5 "out_srs":"EPSG:32632"

(continues on next page)

414 Chapter 12. Tutorials

mailto:brad.chambers@gmail.com
https://github.com/PDAL/PDAL/releases/tag/1.5.0

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
6 },
7 {
8 "type":"filters.assign",
9 "value":"Classification = 0"

10 },
11 {
12 "type":"filters.elm"
13 },
14 {
15 "type":"filters.outlier"
16 },
17 {
18 "type":"filters.smrf",
19 "returns":"last",
20 "where":"!(Classification == 7)",
21 "slope":0.2,
22 "window":16,
23 "threshold":0.45,
24 "scalar":1.2
25 },
26 {
27 "type":"filters.expression",
28 "expression":"Classification == 2"
29 }
30]
31 }

Note: For users familiar with PDAL pipelines, this example may seem to be missing a couple
of very important stages, namely the reader and writer! A new feature of PDAL is the ability to
provide a PDAL pipeline with no reader or writer stages to the translate (page 50) command.
The input and output filenames can be specified on the command line and will be automatically
inserted into the pipeline by the application.

12.1. Tutorials 415

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The Explanation

We continue by explaining the various stages of the pipeline in order.

Reprojecting Data

Many of PDAL’s default parameters are specified in meters, and individual filter stages
typically assume that units are at least uniform in X, Y, and Z. Because data will not always be
provided in this way, PDAL pipelines should account for any data reprojections and parameter
scaling that are required from one dataset to the next.

3 {
4 "type":"filters.reprojection",
5 "out_srs":"EPSG:32632"
6 },

In this example, we show data being reprojected to EPSG:32632 with X, Y, and Z in meters.

Assigning Classification Values

Let’s assume that you have been given an LAS file that contains per point classifications, but
you’d like to start with a clean slate and derive your own classifications with your PDAL
pipeline.

PDAL’s assign filter (page 257) has been added to assign values to a given dimension. In our
example, a single option has been provided that specifies the dimension, range, and value to
assign. In this case, we are stating that we would like to apply a value of 0 to the
Classification dimension for every point.

7 {
8 "type":"filters.assign",
9 "value":"Classification = 0"

10 },

Note: Previously, you could do the same thing (with a slightly different syntax) using
filters.attribute, but this filter has been deprecated and split into filters.assign (page 257)
and filters.overlay (page 260).

416 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Extended Local Minimum

The Extended Local Minimum (ELM) method (page 204) helps to identify low noise points that
can adversely affect ground segmentation algorithms. ELM was first published in [Chen2012]
as part of the upward-fusion method of DTM generation. Noise points are classified with a
value of 7 in keeping with the LAS specification.

11 {
12 "type":"filters.elm"
13 },

Outliers

PDAL’s outlier filter (page 206) provides two methods of outlier detection at the moment:
radius and statistical. Both aim to identify points that are isolated and likely arise from
noise sources. Noise points are classified with a value of 7 in keeping with the LAS
specification.

14 {
15 "type":"filters.outlier"
16 },

Ground Segmentation

The Simple Morphological Filter (SMRF) (page 198) [Pingel2013] is a newer addition to
PDAL that has quietly existed in an alpha state since v1.3. With the release of PDAL v1.5, our
SMRF implementation is much more complete, although it only implements nearest neighbor
void filling and not the authors’ preferred “Springs” algorithm.

The changes to SMRF between PDAL v1.3 and v1.5 are substantial. The original version had
actually drifted quite far from the authors’ published approach, namely in the area of filling
voids. We have reverted the code to match the published work, but for now are only using the
nearest neighbors approach to filling voids. The morphological operations are also accelerated
by moving to an iterative approach and using a diamond structuring element.

17 {
18 "type":"filters.smrf",
19 "returns":"last",
20 "where":"!(Classification == 7)",
21 "slope":0.2,
22 "window":16,
23 "threshold":0.45,

(continues on next page)

12.1. Tutorials 417

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
24 "scalar":1.2
25 },

In addition to specifying some of the SMRF-specific arguments, our example also
demonstrates the use of two optional pre-filtering capabilities: ignore and last.

The ignore option accepts a range (page 320), here indicating that we have points marked as
noise (i.e., Classification of 7) that should be excluded from ground segmentation, but are
kept as part of the output dataset.

The last option, when set to true indicates that we would like to only consider last returns for
ground segmentation when return information is available. Again, returns that are not “last
returns” are still retained in the output dataset - they are simply ignored for the purposes of
ground segmentation.

Note: Many lidar systems provide return information. This includes the number of returns per
pulse and the order of a particular return within the pulse. Where the return number and
number of returns are equal, we call this a last return.

Last returns are not by definition ground returns. In fact, the first and only return from surfaces
such as rooftops will also be last returns, and last returns within dense foliage may not ever
make it all the way to ground. Still, whenever there are multiple returns within a pulse, it stands
to reason that anything before the last return would not be from the ground.

Some bare earth algorithms explicitly operate on last returns only. In this case, this logic will
presumably be implemented within the filter stage itself. That being said, it stands to reason
that any ground segmentation approach could be improved by excluding all returns but the
so-called last returns. Neither PMF nor SMRF make this assertion, but our implementations
still consider only last returns by default. This behavior can be changed by setting last=false.

For an example of how to filter on last returns outside the context of SMRF and PMF, see this
(https://github.com/PDAL/PDAL/blob/master/test/data/pipeline/predicate-keep-last-
return.json.in) within PDAL’s source tree.

Note: SMRF is not intended to be a replacement for the Progressive Morphological Filter
(PMF) (page 195) [Zhang2003]. Rather, it is offered as an alternative. PMF has been a part of
PDAL since v1.0, first as part of the PCL plugin and now as filters.pmf. Since PDAL v1.4,
we have fixed a number of bugs, and have accelerated the approximate mode by implementing
iterative morphological operations and using a diamond structuring element.

418 Chapter 12. Tutorials

https://github.com/PDAL/PDAL/blob/master/test/data/pipeline/predicate-keep-last-return.json.in

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Extracting Ground Returns

Any time we have points classified as ground, we may wish to extract just these points, e.g., to
create a digital terrain model (DTM). In this case, we use a range filter (page 318) as shown.

26 {
27 "type":"filters.expression",
28 "expression":"Classification == 2"
29 }

The range filter (page 318) accepts a limits option that identifies the dimension(s) on which
to filter and the range (page 320) of values to passthrough. In this case, we are indicating that
the filter should only pass points whose Classification value is equal to 2.

Note: The default behavior of both PMF (page 195) and SMRF (page 198) is to classify
points, which has not changed from previous versions of PDAL. The extract and classify
options have been removed in PDAL v1.5. These filters now only classify points, such that
ground points can be identified and filtered downstream, as we have shown with the range filter
above.

Running the Pipeline

Now let’s run our pipeline.json example, using it to translate (page 50) input.las to
output.las.

$ pdal translate input.las output.las --json pipeline.json

12.1.6 Applying a grid shift to point clouds

Introduction

This tutorial first appeared on Land Information New Zealand’s On-Location Blog
(https://medium.com/on-location).

It describes how to use Conda (https://conda.io), PDAL (https://pdal.io), and GDAL
(https://gdal.org) to apply a grid shift to point cloud files. It uses PDAL’s readers.las
(https://pdal.io/stages/readers.las.html) to fetch the data, filters.reprojection
(https://pdal.io/stages/filters.reprojection.html) to apply the grid shift, and writers.las
(https://pdal.io/stages/writers.las.html) to write the reprojected point cloud.

The data used in this tutorial is available for free under a CC-BY 4.0 license on Land
Information New Zealand’s LINZ Data Service (https://data.linz.govt.nz).

12.1. Tutorials 419

https://medium.com/on-location
https://conda.io
https://pdal.io
https://gdal.org
https://pdal.io/stages/readers.las.html
https://pdal.io/stages/filters.reprojection.html
https://pdal.io/stages/writers.las.html
https://data.linz.govt.nz

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The tutorial will be reprojecting point cloud files from:

• A New Zealand local vertical datum to the New Zealand Vertical Datum 2016
(NZVD2016).

• New Zealand Geodetic Datum 2000 (NZGD2000) to NZVD2016.

• Finally, NZVD2016 to NZGD2000 or to a local vertical datum.

Background

Historically in New Zealand, heights were defined in terms of 13 local vertical datums (LVD)
referenced to an estimate of the local mean sea level (MSL).

In 2016, New Zealand Vertical Datum 2016 (NZVD2016), which is defined by the
NZGeoid2016 geoid, became the official national vertical datum for New Zealand. The general
relationship between the different datums is shown in the diagram below.

Available on the LINZ Data Service (https://data.linz.govt.nz) (LDS) are relationship grids
(https://data.linz.govt.nz/search/category/geodetic/vertical-datum-
2016/?q=NZVD2016+Conversion+Raster) which model the difference between the local
vertical datums and NZVD2016 (O in the above diagram).

The NZ Quasigeoid 2016 (https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/),
also a relationship grid, models the difference between the NZGD2000 ellipsoid and
NZVD2016 (N in the above diagram).

The equations to transform heights using the published values in the relationship grids are:

Before we begin

We will be using multiple tools to perform the reprojection. To retrieve these tools and have
them all accessible in a nice self-contained environment we will be using a system called
Conda. Conda is an open source package and environment management system that runs on
Windows, macOS, and Linux. Essentially we will create an environment within Conda which
will contain the packages we need: PDAL, GDAL and Python.

Install Conda

Download Miniconda (https://docs.conda.io/en/latest/miniconda.html), selecting the 64-bit
installer for your platform and install it as directed.

420 Chapter 12. Tutorials

https://data.linz.govt.nz
https://data.linz.govt.nz/search/category/geodetic/vertical-datum-2016/?q=NZVD2016+Conversion+Raster
https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/
https://docs.conda.io/en/latest/miniconda.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

12.1. Tutorials 421

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

422 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Create a Conda Environment

1. After installing, open the Anaconda Prompt from your start menu.

2. When you begin using conda, you already have a default environment named base. We
don’t want to put programs into our base environment so we’ll create a separate
environment just for doing this reprojection. To do this, type:

conda create --name vd-reproject

3. It will check for the additional packages/dependencies that are needed, and will ask if you
want to proceed. Say yes.

Proceed ([y]/n)? y

4. To start to use the new environment and install our required packages within it, we need
to activate the environment first:

conda activate vd-reproject

Note: After the environment is activated the name of the environment appears as
(vd-reproject) at the beginning of the command line. This indicates that you’re now
inside the environment.

5. Finally, we need to install the tools/packages we will be using.

conda install -c conda-forge pdal gdal

When these packages are installed, they will also install the packages they’re dependent on to
run. Python is one of these dependent packages, so we won’t need to install it ourselves as
conda would’ve already done it for us.

Now that the packages are installed, we are ready to begin.

Step 1: Create a Datum Transformation Grid (GTX)

PDAL allows for the use of PROJ.4 strings to define the spatial reference system of the inputted
or outputted data. This is great, because it gives us the ability to use +geoidgrid which is an
option to add a grid shift file in the format of NOAA Vdatum’s GTX file format. But where to
we get a GTX file from? We have two options:

12.1. Tutorials 423

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Option 1 — LINZ supplied GTX file

LINZ has created GTX files for each of the relationship grids mentioned earlier. They can be
downloaded from https://www.geodesy.linz.govt.nz/download/proj-datumgrid-nz

Here is a list of which GTX file belongs to which Local Vertical Datum:

• Auckland 1946: auckht1946-nzvd2016.gtx

• Bluff 1955: blufht1955-nzvd2016.gtx

• Dunedin 1958: duneht1958-nzvd2016.gtx

• Dunedin-Bluff 1960: dublht1960-nzvd2016.gtx

• Gisborne 1926: gisbht1926-nzvd2016.gtx

• Lyttelton 1937: lyttht1937-nzvd2016.gtx

• Moturiki 1953: motuht1953-nzvd2016.gtx

• Napier 1962: napiht1962-nzvd2016.gtx

• Nelson 1955: nelsht1955-nzvd2016.gtx

• One Tree Point 1964: ontpht1964-nzvd2016.gtx

• Stewart Island 1977: stisht1977-nzvd2016.gtx

• Taranaki 1970: taraht1970-nzvd2016.gtx

• Wellington 1953: wellht1953-nzvd2016.gtx

There is also a GTX file for the Quasigeoid which would be used if converting between
NZVD2016 and the NZGD2000 ellipsoid.

• New Zealand Quasigeoid 2016: nzgeoid2016.gtx

Option two — Create a GTX file

You can create your own GTX file using the relationship grids available on the LDS. For
example, if you intend to convert from Moturiki 1953 to NZVD2016, you have to do the
following:

1. Download the ‘Moturiki 1953 to NZVD2016 Conversion Raster’ as a TIFF from the
LDS in ‘WGS 84 (EPSG:4326 Geographic)’ Map projection.
https://data.linz.govt.nz/layer/103959-moturiki-1953-to-nzvd2016-conversion-raster/.

2. Open the Anaconda Prompt from the start menu and activate the environment we created
earlier:

424 Chapter 12. Tutorials

https://www.geodesy.linz.govt.nz/download/proj-datumgrid-nz
https://data.linz.govt.nz/layer/103959-moturiki-1953-to-nzvd2016-conversion-raster/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

conda activate vd-reproject

3. Navigate to the location of the downloaded TIFF file and execute gdal_translate to
convert the TIFF file to a GTX file:

cd path/to/TIFF/file

gdal_translate -ot Float32 "moturiki-1953-to-nzvd2016-conversion-
→˓raster.tif" "moturiki-1953-to-nzvd2016-conversion-raster.gtx"

Note: -ot Float32 indicates the data type of the output image’s bands. GTX files only
support Float32.

12.1. Tutorials 425

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Step 2: Prepare a JSON Pipeline file

We will be using a PDAL pipeline (https://pdal.io/pipeline.html) to transmit a chain of
processing elements into PDAL. These elements will be represented in a JSON file.

Using a text editor, create a JSON file named pipeline.json containing the contents as below.

{
"pipeline":

[
{

"type": "readers.las",
"filename": "#"

},
{

"type": "filters.reprojection",
"in_srs": "EPSG:2193",
"out_srs": "EPSG:2193"

},
{

"type": "writers.las",
"filename": "#",
"a_srs": "EPSG:2193",
"forward": "all"

}
]

}

Update the srs details for in_srs, out_srs and a_srs to the EPSG code of the horizontal
map projection your source LAS files are in. In the example above we are using New Zealand
Transverse Mercator 2000 (EPSG:2193).

Warning: Be aware "forward": "all" under the writers.las section represents the
header fields whose values should be preserved from the source LAS file. all will transfer
all header fields, including scale and offset values, as well as VLRs. If you desire to transfer
only specific header fields, refer to https://pdal.io/stages/writers.las.html for more
information about this option.

426 Chapter 12. Tutorials

https://pdal.io/pipeline.html
https://pdal.io/stages/writers.las.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Step 3: Use PDAL to reproject

Reprojecting one file from LVD to NZVD2016

Using the Anaconda Prompt, activate the vd-reproject environment:

conda activate vd-reproject

Then issue the following command to reproject one file (of course, replace the files and paths to
suit your needs).

pdal pipeline "path/to/your/pipeline.json" — readers.las.filename="path/
→˓to/source_las_file.las" — writers.las.filename="path/to/reprojected_
→˓las_file.las" — filters.reprojection.out_srs="+init=EPSG:2193␣
→˓+geoidgrids=path/to/your/gtx_file.gtx"

Reprojecting multiple files from LVD to NZVD2016

Below is a python script which executes multiple LAS files. Save to your computer as
lvd_to_nzvd2016.py, then open in a text editor and update src_directory, gtxfile,
jsonfile, horizontal_srs with the necessary information.

Note: The file is also available from
https://gist.github.com/rclarkelinz/d48de5c0432f5c00d02a452e6d1d3bc3

import os
import sys

src_directory='/path/to/diretory/with/las/files'
gtxfile='/path/to/yourgridfile.gtx'
jsonfile='/path/to/pipeline.json'
horizontal_srs='EPSG:2193'

dest_directory = src_directory + '/reprojected'
if not os.path.exists(dest_directory): os.mkdir(dest_directory)

for filename in os.listdir(src_directory):
if (filename.endswith('.las') or filename.endswith('.laz')):

print('Reprojecting ' + filename)
pdal_cmd ='pdal pipeline {} --readers.las.filename={} --

→˓writers.las.filename={} --filters.reprojection.out_srs="+init={}␣
(continues on next page)

12.1. Tutorials 427

https://gist.github.com/rclarkelinz/d48de5c0432f5c00d02a452e6d1d3bc3

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓+geoidgrids={}"'.format(jsonfile, src_directory + '/' + filename,␣
→˓dest_directory + '/' + filename, horizontal_srs,gtxfile)

os.system(pdal_cmd)

To execute the script, open the Anaconda Prompt, activate the vd-reproject environment
and then navigate to where you have saved the script and issue this command:

python lvd_to_nzvd2016.py

This script creates a new directory called ‘reprojected’ in the same location as the LAS files. On
completion the reprojected LAS files will be located in this directory, ready for your GIS needs.

You can spot check the accuracy of the conversion by using the LINZ Online converter:
www.geodesy.linz.govt.nz/concord

Reprojecting from NZGD2000 to NZVD2016

The steps to do this reprojection are the same as above except for one change:

In Step 1, for option one, the GTX file required will be nzgeoid2016.gtx. Or, if you are
following option two, the relationship grid on the LDS is the NZ Quasigeoid 2016
(https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/).

NZVD2016 to NZGD2000 or LVD

Previously, the grid values are being subtracted from the point cloud value in Step 3. To
reproject to NZGD2000 or an LVD, the grid values need to be added to the NZVD2016 value.

To accommodate this change in PDAL, you need to alter the following text in the PDAL
command from filters.reprojection.out_srs to filters.reprojection.in_srs.

428 Chapter 12. Tutorials

https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

12.1. Tutorials 429

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

430 Chapter 12. Tutorials

CHAPTER

THIRTEEN

WORKSHOP

13.1 Point Cloud Processing and Analysis with PDAL

Author
Howard Butler

Author
Pete Gadomski

Author
Dr. Craig Glennie

Author
Michael Smith

Author
Dr. Adam Steer

Contact
howard@hobu.co

Date
06/01/2023

13.1.1 Introduction

After the basic set up the workshop is divided into three 45 to 90 min sections with a final
project at the end.

1. Introduction to LiDAR (page 433)

2. Introduction to PDAL (page 5)

3. Software Installation (page 438)

4. Getting Started (page 444)

431

mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5. Manipulation (page 460)

6. Generation (page 490)

7. Final Project (page 521)

Materials

USB Drive

A companion USB drive containing everything needed to do the workshop without internet
connectivity

Note: A drive image is available for download at
https://pdal.s3.amazonaws.com/workshop/PDAL-Workshop-complete.zip

Included in the USB driver are

• Installers for QGIS (https://www.qgis.org/en/site/), CloudCompare
(https://www.danielgm.net/cc/), and mambaforge
(https://github.com/conda-forge/miniforge#mambaforge).

• Conda environments for macOS (x86_64 and arm64) and Windows platforms with
needed dependencies

• Copy of PDAL documentation

• Data needed for examples

• Collection of cool-lidar (https://github.com/hobuinc/cool-lidar) datasets

432 Chapter 13. Workshop

https://pdal.s3.amazonaws.com/workshop/PDAL-Workshop-complete.zip
https://www.qgis.org/en/site/
https://www.danielgm.net/cc/
https://github.com/conda-forge/miniforge#mambaforge
https://github.com/hobuinc/cool-lidar

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

13.1.2 Introduction to LiDAR

LiDAR is a remote sensing technique that uses visible or near-infrared laser energy to measure
the distance between a sensor and an object. LiDAR sensors are versatile and (often) mobile;
they help autonomous cars avoid obstacles and make detailed topographic measurements from
space. Before diving into LiDAR data processing, we will spend a bit of time reviewing some
LiDAR fundamentals and discussing some terms of art.

Types of LiDAR

LiDAR systems, generally speaking, come in one of three types:

• Pulse-based, or linear-mode, systems emit a pulse of laser energy and measure the time
it takes for that energy to travel to a target, bounce off the target, and be returned to the
sensor. These systems are called linear-mode because they (generally) only have a single
aperture, and so can only measure distance along a single vector at any point in time.
Pulse-based systems are very common, and are usually what you would think of when
you think of LiDAR.

• Phase-based LiDAR systems measure distance via interferometry, that is, by using the
phase of a modulated laser beam to calculate a distance as a fraction of the modulated
signal’s wavelength. Phase-based systems can be very precise, on the order of a few
millimeters, but since they require comparatively more energy than the other two types
they are usually used for short-range (e.g. indoor) scanning.

• Geiger-mode, or photon-counting, systems use extremely sensitive detectors that can be
triggered by a single photon. Since only a single photon is required to trigger a
measurement, these systems can operate at much much higher altitudes than linear mode
systems. However, Geiger-mode systems are relatively new and suffer from very high
amounts of noise and other operational restrictions, making them significantly less
common than linear-mode systems.

Note: Unless otherwise noted, if we talk about a LiDAR scanner in this program, we will be
referring to a pulse-based (linear) system.

Modes of LiDAR Collection

LiDAR collects are generally categorized into four subjective types:

• Terrestrial LiDAR Scanning (TLS): scanning with a stationary LiDAR sensor, usually
mounted on a tripod.

• Airborne LiDAR scanning (ALS): also called airborne laser swath mapping (ALSM),
scanning with a LiDAR scanner mounted to a fixed-wing or rotor aircraft.

13.1. Point Cloud Processing and Analysis with PDAL 433

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Mobile LiDAR scanning (MLS): scanning from a ground-based vehicle, such as a car.

• Unmanned LiDAR scanning (ULS): scanning with drones or other unmanned vehicles.

With the exception of stationary TLS, LiDAR scanning generally requires the use of an
integrated GNSS/IMU (Global Navigation Satellite System/Inertial Motion Unit), which
provides information about the position, rotation, and motion of the scanning platform.

Note: As stated in the class description, we will focus on mobile and airborne laser scanning
(MLS/ALS), though we will also use some TLS data.

Georeferencing

LiDAR scanners collect information in the Scanner’s Own Coordinate System (SOCS); this is a
coordinate system centered at the scanner. The process of rotating, translating, and (possibly)
transforming a point cloud into a real-world spatial reference system is known as
georeferencing.

In the case of TLS, georeferencing is simply a matter of discovering the position and
orientation of the static scanner. This is usually done with GNSS control points, which are used
to solve for the scanner’s position via least-squares.

For mobile or airborne LiDAR scanning, it is necessary to merge the scanner’s points with the
GNSS/IMU data. This can be done on-the-fly or as a part of a post-processing workflow. Since
this is a common operation for mobile and airborne LiDAR collects, we will spend a moment
discussing the methods and complications for georeferencing mobile LiDAR and GNSS/IMU
data.

Integrating LiDAR and GNSS/IMU data

The LiDAR georeferencing equation is well-established; we present a version here from
[Gle07]:

p𝑙
𝐺 = p𝑙

𝐺𝑃𝑆 +R𝑙
𝑏

(︀
R𝑏

𝑠r
𝑠 − l𝑏

)︀
(13.1)

where:

• p𝑙
𝐺 are the coordinates of the target point in the global reference frame

• p𝑙
𝐺𝑃𝑆 are the coordinates of the GNSS sensor in the global reference frame

• R𝑙
𝑏 is the rotation matrix from the navigation frame to the global reference frame

• R𝑏
𝑠 is the rotation matrix from the scanner’s frame to the navigation frame (boresight

matrix)

434 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• r𝑠 is the coordinates of the laser point in the scanner’s frame

• l𝑏 is the lever-arm offset between the scanner’s original and the navigation’s origin

This equation contains fourteen unknowns, and in order to georeference a single LiDAR return
we must determine all fourteen variables at the time of the pulse.

As a rule of thumb, the position, attitude, and motion of the scanning platform (aircraft,
vehicle, etc) are sampled at a much lower rate than the pulse rate of the laser — rates of ~1Hz
are common for GNSS/IMU sampling. In order to match the GNSS/IMU sampling rate with
the sampling rate of the laser, GNSS/IMU measurements are interpolated to line up with the
LiDAR measurements. Then, these positions and attitudes are combined via Equation (13.1) to
create a final, georeferenced point cloud.

Note: While lever-arm offsets are usually taken from the schematic drawings of the LiDAR
mounting system, the boresight matrix cannot be reliably determined from drawings alone. The
boresight matrix must therefore be determined either via manual or automated boresight
calibration using actual LiDAR data of planar surfaces, such as the roof and sides of buildings.
The process for determining a boresight calibration from LiDAR data is beyond the scope of
this class.

Discrete-Return vs. Full-Waveform

Pulse-based LiDAR systems use the round-trip travel time of a pulse of laser energy to measure
distances. The outgoing pulse of a LiDAR system is roughly (but not exactly) a Gaussian:

This pulse can interact with multiple objects in a scene before it is returned to the sensor. Here
is an example of a LiDAR return:

As you can see, this return pulse can be very complicated. While there is more information
contained in the “full waveform” picture displayed above, many LiDAR consumers are only
interested in detecting the presence or absence of an object — simplistically, the peaks in that
waveform.

Full waveform data is used only in specialized circumstances. If you have or receive LiDAR
data, it will usually be discrete return (point clouds). Processing full waveform data is beyond
the scope of this class.

Note: PDAL is a discrete-return point cloud processing library. It does not have any
functionality to analyze or process full waveform data.

13.1. Point Cloud Processing and Analysis with PDAL 435

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 1: A real-world outgoing LiDAR pulse.

436 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 2: A real-world incoming LiDAR return. Potential discrete-return peaks are marked in red.

13.1. Point Cloud Processing and Analysis with PDAL 437

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

13.1.3 Software Installation

Conda

What is Conda

Conda is an open source package management system and environment management system
that runs on Windows, macOS and Linux. Conda quickly installs, runs, and updates packages
and their dependencies. Conda easily creates, saves, loads and switches between environments
on your local computer. It was created for Python programs, but it can package and distribute
software for any language.

How will we use Conda?

PDAL stands on the shoulders of giants. It uses GDAL, GEOS, and many other dependencies
(page 540). Because of this, it is very challenging to build it yourself. We could easily burn an
entire workshop learning the esoteric build mysteries of PDAL and all of its dependencies.
Fortunately, Conda provides us a fully-featured known configuration to run our examples and
exercises without having to suffer so much, and provides it for Windows, Linux, and macOS.

Note: Not everyone uses Conda. Another alternative to get a known configuration is to go
through the workshop using docker (page 593) as your platform. A previous edition of the
workshop was provided using Docker, but it was found to be a bit too difficult to follow.

Note: PDAL does not have a python wheel package and thus is distributed via conda-forge
conda channel. If you would like to know more about the limitations that prevent PDAL from
being distributed as a pip package, you can read about it at the pypackaging-native website
(https://pypackaging-native.github.io/key-issues/native-dependencies/geospatial_stack/)

Installing Conda Environment (Workshop USB)

1. Once mambaforge (https://github.com/conda-forge/miniforge#mambaforge) is installed,
open a terminal and navigate to the location of your USB drive

2. Uncompress the environment, activate it, and use the conda-unpack command

• macOS Users

$ mkdir -p "$HOME/mambaforge/envs/pdal-workshop"
$ tar -xzf conda_environments/pdal-workshop_osx-arm64.tar.

(continues on next page)

438 Chapter 13. Workshop

https://pypackaging-native.github.io/key-issues/native-dependencies/geospatial_stack/
https://github.com/conda-forge/miniforge#mambaforge

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓gz -C "$HOME/mambaforge/envs/pdal-workshop"
$ source "$HOME/mambaforge/envs/pdal-workshop/bin/activate"
(pdal-workshop) $ conda-unpack

• Windows Users

> mkdir "%userprofile%\mambaforge\envs\pdal-workshop"
> tar -xvf ./conda_environments/pdal-workshop-win64.zip -C
→˓"%userprofile%\mambaforge\envs\pdal-workshop"
> call "%userprofile%\mambaforge\envs\pdal-workshop\
→˓scripts\activate"
(pdal-workshop) > conda-unpack

Installing Conda

1. Copy the entire contents of your workshop USB key to a PDAL directory in your home
directory (something like C:\Users\hobu\PDAL) or the equivalent for your OS. We will
refer to this location for the rest of the workshop materials.

2. Download and install the mambaforge
(https://github.com/conda-forge/miniforge#mambaforge) installer for your platform

3. After installing mambaforge create your workshop by running

> conda create -c conda-forge -n pdal-workshop

4. Then activate the new environment

> conda activate pdal-workshop

5. Install PDAL, Entwine, and GDAL, and install it from conda-forge

(pdal-workshop) > mamba install -c conda-forge python-pdal gdal␣
→˓entwine matplotlib

Alternatively use the following environment.yml file to create your environment

name: pdal-workshop
channels:

- conda-forge
dependencies:

- python=3.11
- pdal=2.6.2

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 439

https://github.com/conda-forge/miniforge#mambaforge

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
- python-pdal
- gdal
- untwine
- geopandas
- conda-pack

Note: The conda-pack package is used for packaging the pdal-workshop conda
environment to go to the USB image, and is not needed otherwise

Using Conda From ArcGIS Pro

1. Launch the Python Command Prompt

2. After launching, create the conda environment for the workshop

> conda create -n pdal-workshop -c conda-forge python=3.11 --yes

3. Activate the newly created environment

> activate pdal-workshop

4. Install pdal

> conda install -c conda-forge pdal

QGIS

What is QGIS (http://qgis.org)?

QGIS (http://qgis.org) is an open source GIS. It is extensible with Python (http://python.org/),
it integrates the GRASS (https://grass.osgeo.org/) analytic environment, and it works on both
Windows and OS X.

440 Chapter 13. Workshop

http://qgis.org
http://python.org/
https://grass.osgeo.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

How will we use QGIS?

We’re using QGIS (http://qgis.org) to visualize raster and vector processing product during our
workshop. We will also use QGIS (http://qgis.org) to visualize point clouds by generating
COPC (page 144) files. If you have another GIS available to you, you are welcome to use it, but
because QGIS (http://qgis.org) is open source, we are installing it and using it to be sure you’ll
have something to look at data with.

Installing QGIS

1. Copy the contents of your Hobu (https://hobu.co/) USB key to a PDAL directory in your
home directory (something like C:\Users\hobu\PDAL). We will refer to this location
for the rest of the workshop materials.

2. After your materials are copied, navigate to the c:\Users\hobu\PDAL\software
directory.

Note: It is assumed your Hobu (https://hobu.co/) USB drive has all of its contents copied to
the C:\Users\hobu\PDAL folder. Please adjust your locations when reading these tutorial
documents accordingly.

3. Choose the install image, Windows or Mac, and install QGIS (http://qgis.org) prepare
your machine to run the examples.

13.1. Point Cloud Processing and Analysis with PDAL 441

http://qgis.org
http://qgis.org
http://qgis.org
https://hobu.co/
https://hobu.co/
http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

4. Once installed, verify you can run QGIS (http://qgis.org) by opening the application. At
the top, choose Layer --> Add Layer --> Add Raster Layer.... Navigate to the
C:\Users\hobu\PDAL\exercises\analysis\colorization directory.

442 Chapter 13. Workshop

http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5. Select the casi-2015-04-29-weekly-mosaic.tif image and open it for display.

13.1. Point Cloud Processing and Analysis with PDAL 443

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Conclusion

QGIS (http://qgis.org) allows everyone to have access to a fully-featured GIS. We are going to
use it to visualize raster, vector, and point cloud data used throughout the workshop.

13.1.4 Getting Started

Printing the first point

Exercise

This exercise uses PDAL to print information from the first point. Before starting, be sure to set
your working directory in Conda to the location of the PDAL workshop data. For example, if
the workshop folder was located on your desktop:

$ cd Desktop/PDAL

Issue the following command in your Conda Shell.

444 Chapter 13. Workshop

http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

$ pdal info ./exercises/info/interesting.las -p 0

Here’s a summary of what’s going on with that command invocation

1. pdal: The pdal application :)

2. info: We want to run info (page 38) on the data. All commands are run by the pdal
application.

3. ./exercises/info/interesting.las: The file we are running the command on.
PDAL will be able to identify this file is an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) file from the extension, .las, but not every file type is easily identified.
You can use a pipeline (page 41) to override which reader (page 65) PDAL will use to
open the file. For this workshop, we will often output a COPC (page 144) file type. For
our purposes, COPC files (In the format *.copc.laz) can be visualized in QGIS
(http://qgis.org). To read more about COPC, refer to this article
(https://mapscaping.com/podcast/cloud-optimized-point-clouds/).

4. -p 0: -p corresponds to “print a point”, and 0 means to print the first one (computer
people count from 0).

$ pdal info ./exercises/info/interesting.las -p 0
{

"file_size": 37698,
"filename": "./exercises/info/interesting.las",
"now": "2023-05-30T16:11:25-0700",
"pdal_version": "2.5.4 (git-version: Release)",
"points":
{

"point":
{

"Blue": 88,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 245380.7825,
"Green": 77,
"Intensity": 143,
"NumberOfReturns": 1,
"PointId": 0,
"PointSourceId": 7326,
"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 445

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://qgis.org
https://mapscaping.com/podcast/cloud-optimized-point-clouds/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"UserData": 132,
"X": 637012.24,
"Y": 849028.31,
"Z": 431.66

}
},
"reader": "readers.las"

}

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 38). JSON is a structured, human-readable format
that is much simpler than its XML (https://en.wikipedia.org/wiki/XML) cousin.

2. You can use the writers.text (page 183) writer to output point attributes to CSV
(https://en.wikipedia.org/wiki/Comma-separated_values) format for other processing.

3. Output help information on the command line by issuing the --help option

4. A common query with pdal info is --all, which will print all header, metadata, and
statistics about a file.

Printing file metadata

Exercise

This exercise uses PDAL to print metadata information. Issue the following command in your
Conda Shell.

$ pdal info ./exercises/info/interesting.las --metadata
{
"file_size": 37698,
"filename": "./exercises/info/interesting.las",
"metadata":
{

"comp_spatialreference": "PROJCS[\"NAD_1983_Oregon_Statewide_
→˓Lambert_Feet_Intl\",GEOGCS[\"GCS_North_American_1983\",DATUM[\"North_
→˓American_Datum_1983\",SPHEROID[\"GRS_1980\",6378137,298.257222101]],
→˓PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\
→˓"EPSG\",\"9122\"]]],PROJECTION[\"Lambert_Conformal_Conic_2SP\"],
→˓PARAMETER[\"latitude_of_origin\",41.75],PARAMETER[\"central_meridian\

(continues on next page)

446 Chapter 13. Workshop

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Comma-separated_values

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓",-120.5],PARAMETER[\"standard_parallel_1\",43],PARAMETER[\"standard_
→˓parallel_2\",45.5],PARAMETER[\"false_easting\",400000],PARAMETER[\
→˓"false_northing\",0],UNIT[\"foot\",0.3048,AUTHORITY[\"EPSG\",\"9002\
→˓"]],AXIS[\"Easting\",EAST],AXIS[\"Northing\",NORTH]]",

"compressed": false,
"copc": false,
"count": 1065,
"creation_doy": 145,
"creation_year": 2012,
"dataformat_id": 3,
"dataoffset": 1488,
"filesource_id": 0,
"global_encoding": 0,
"global_encoding_base64": "AAA=",
"gtiff": "Geotiff_Information:\n Version: 1\n Key_Revision: 1.0\

→˓n Tagged_Information:\n End_Of_Tags.\n Keyed_Information:\n ␣
→˓ GTModelTypeGeoKey (Short,1): ModelTypeProjected\n ␣
→˓GTRasterTypeGeoKey (Short,1): RasterPixelIsArea\n ␣
→˓GTCitationGeoKey (Ascii,44): \"NAD_1983_Oregon_Statewide_Lambert_Feet_
→˓Intl\"\n GeographicTypeGeoKey (Short,1): User-Defined\n ␣
→˓GeogCitationGeoKey (Ascii,106): \"GCS Name = GCS_North_American_
→˓1983|Datum = D_North_American_1983|Ellipsoid = GRS_1980|Primem =␣
→˓Greenwich|\"\n GeogGeodeticDatumGeoKey (Short,1): User-Defined\n␣
→˓ GeogAngularUnitsGeoKey (Short,1): Angular_Degree\n ␣
→˓GeogEllipsoidGeoKey (Short,1): User-Defined\n ␣
→˓GeogSemiMajorAxisGeoKey (Double,1): 6378137 \n ␣
→˓GeogInvFlatteningGeoKey (Double,1): 298.257222101 \n ␣
→˓GeogPrimeMeridianLongGeoKey (Double,1): 0 \n ␣
→˓ProjectedCSTypeGeoKey (Short,1): User-Defined\n ProjectionGeoKey␣
→˓(Short,1): User-Defined\n ProjCoordTransGeoKey (Short,1): CT_
→˓LambertConfConic_2SP\n ProjLinearUnitsGeoKey (Short,1): Linear_
→˓Foot\n ProjStdParallel1GeoKey (Double,1): 43 \n ␣
→˓ ProjStdParallel2GeoKey (Double,1): 45.5 \n ␣
→˓ProjFalseOriginLongGeoKey (Double,1): -120.5 \n ␣
→˓ProjFalseOriginLatGeoKey (Double,1): 41.75 \n ␣
→˓ProjFalseOriginEastingGeoKey (Double,1): 400000 \n ␣
→˓ProjFalseOriginNorthingGeoKey (Double,1): 0 \n ␣
→˓End_Of_Keys.\n End_Of_Geotiff.\n",

"header_size": 227,
"major_version": 1,
"maxx": 638982.55,
"maxy": 853535.43,
"maxz": 586.38,

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 447

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"minor_version": 2,
"minx": 635619.85,
"miny": 848899.7,
"minz": 406.59,
"offset_x": 0,
"offset_y": 0,
"offset_z": 0,
"point_length": 34,
"project_id": "00000000-0000-0000-0000-000000000000",
"scale_x": 0.01,
"scale_y": 0.01,
"scale_z": 0.01,
"software_id": "HOBU-GENERATING",
...

Note: PDAL metadata (page 551) is returned a in a tree structure corresponding to processing
pipeline that produced it.

See also:

Use the JSON (https://en.wikipedia.org/wiki/JSON) processing capabilities of your favorite
processing software to selectively access and manipulate values.

• Python JSON library (https://docs.python.org/3/library/json.html)

• jsawk (https://github.com/micha/jsawk) (like awk but for JSON data)

• jq (https://stedolan.github.io/jq/) (command line processor for JSON)

• Ruby JSON library (https://ruby-doc.org/stdlib-3.0.2/libdoc/json/rdoc/JSON.html)

Structured Metadata Output

Many command-line utilities output their data in a human-readable custom format. The
downsides to this approach are significant. PDAL was designed to be used in the context of
other software tools driving it. For example, it is quite common for PDAL to be used in data
validation scenarios. Other programs might need to inspect information in PDAL’s output and
then act based on the values. A human-readable format would mean that downstream program
would need to write a parser to consume PDAL’s special format.

JSON (https://en.wikipedia.org/wiki/JSON) provides a nice balance between human- and
machine- readable, but even then it can be quite hard to find what you’re looking for, especially
if the output is long. pdal command output used in conjunction with a JSON parsing tool like
jq provide a powerful inspection combination.

448 Chapter 13. Workshop

https://en.wikipedia.org/wiki/JSON
https://docs.python.org/3/library/json.html
https://github.com/micha/jsawk
https://stedolan.github.io/jq/
https://ruby-doc.org/stdlib-3.0.2/libdoc/json/rdoc/JSON.html
https://en.wikipedia.org/wiki/JSON

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

For example, we might only care about the system_id and compressed flag for this particular
file. Our simple pdal info --metadata command gives us that, but it also gives us a bunch
of other stuff we don’t need at the moment. Let’s focus on extracting what we want using the jq
command.

Note: If you do not have jq (https://stedolan.github.io/jq/) installed into your Conda
environment and are not on Windows, run the following command in your Conda Shell: conda
install -c conda-forge jq. Windows users should use this link
(https://github.com/jqlang/jq/releases/download/jq-1.7/jq-win64.exe) to install jq
(https://stedolan.github.io/jq/)

$ pdal info ./exercises/info/interesting.las --metadata \
| jq ".metadata.compressed, .metadata.system_id"

> pdal info ./exercises/info/interesting.las --metadata ^
| jq ".metadata.compressed, .metadata.system_id"

Output:

false
"HOBU-SYSTEMID"

Note: PDAL’s JSON output is very powerfully combined with the processing capabilities of
other programming languages such as JavaScript or Python. Both of these languages have
excellent built-in tools for consuming JSON, along with plenty of other features to allow you to
do something with the data inside the data structures. As we will see later in the workshop, this
PDAL feature is one that makes construction of custom data processing workflows with PDAL
very convenient.

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 38). JSON provides human and machine-readable
text data.

2. The PDAL metadata document (page 551) contains background and information about
specific metadata entries and what they mean.

3. Metadata available for a given file depends on the stage that produces the data. Readers
(page 65) produce same-named values where possible, but it is common that variables
are different. Filters (page 193) and even writers (page 139) can also produce metadata
entries.

13.1. Point Cloud Processing and Analysis with PDAL 449

https://stedolan.github.io/jq/
https://github.com/jqlang/jq/releases/download/jq-1.7/jq-win64.exe
https://stedolan.github.io/jq/
https://en.wikipedia.org/wiki/JSON

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

4. Spatial reference system or coordinate system information is a kind of special metadata.
Spatial references are come directly from source data or are provided via options in
PDAL.

Searching near a point

Exercise

This exercise uses PDAL to find points near a given search location. Our scenario is a simple
one – we want to find the two points nearest the midpoint of the bounding cube of our
interesting.las data file.

First we need to find the midpoint of the bounding cube. To do that, we need to print the --all
info for the file and look for the bbox output:

$ pdal info ./exercises/info/interesting.las --all | jq .stats.bbox.
→˓native.bbox
{

"maxx": 638982.55,
"maxy": 853535.43,
"maxz": 586.38,
"minx": 635619.85,
"miny": 848899.7,
"minz": 406.59

}

Find the average the X, Y, and Z values:

x = 635619.85 + (638982.55 - 635619.85)/2 = 637301.20
y = 848899.70 + (853535.43 - 848899.70)/2 = 851217.57
z = 406.59 + (586.38 - 406.59)/2 = 496.49

With our “center point”, issue the --query option to pdal info and return the three nearest
points to it:

$ pdal info ./exercises/info/interesting.las --query "637301.20, 851217.
→˓57, 496.49 /3"
{
"file_size": 37698,
"filename": "./exercises/info/interesting.las",
"now": "2023-05-30T16:17:10-0700",
"pdal_version": "2.5.4 (git-version: Release)",
"points":
{

(continues on next page)

450 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"point":
[
{

"Blue": 221,
"Classification": 1,
"EdgeOfFlightLine": 0,
"GpsTime": 247565.2203,
"Green": 211,
"Intensity": 169,
"NumberOfReturns": 1,
"PointId": 762,
"PointSourceId": 7330,
"Red": 228,
"ReturnNumber": 1,
"ScanAngleRank": -4,
"ScanDirectionFlag": 0,
"UserData": 124,
"X": 637323.56,
"Y": 851555.64,
"Z": 586.38

},
{

"Blue": 243,
...

Note: The /3 portion of our query string tells the query command to give us the 3 nearest
points. Adjust this value to return data in closest-distance ordering.

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 38). JSON is a structured, human-readable format
that is much simpler than its XML (https://en.wikipedia.org/wiki/XML) cousin.

2. The --query option of info (page 38) constructs a KD-tree
(https://en.wikipedia.org/wiki/K-d_tree) of the entire set of points in memory. If you
have really large data sets, this isn’t going to work so well, and you will need to come up
with a different solution.

13.1. Point Cloud Processing and Analysis with PDAL 451

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/K-d_tree

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Compression

Exercise

This exercise uses PDAL to compress ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data into LASzip (http://laszip.org).

1. Issue the following command in your Conda Shell.

$ pdal translate ./exercises/translation/interesting.las \
./exercises/translation/interesting.laz

The translate command converts files based on their extensions.

> pdal translate ./exercises/translation/interesting.las ^
./exercises/translation/interesting.laz

Note: LAS is a very fluffy binary format. Because of the way the data are
stored, there is ample redundant information, and LASzip (http://laszip.org) is
an open source solution for compressing this information. Note that we are
actually inflating the data here. Its laz from the workshop and we are
converting it to las.

2. Verify that the laz data is compressed over the las:

$ ls -alh ./exercises/translation/interesting.la*
...

> dir ./exercises/translation/interesting.la*
...

Output:

-rw-r--r--@ 1 ogi staff 36K Aug 8 2019 ./exercises/
→˓translation/interesting.las
-rwxr-xr-x@ 1 ogi staff 18K May 9 11:30 ./exercises/
→˓translation/interesting.laz

See also:

LAS Reading and Writing with PDAL (page 397) contains many pointers about settings for
ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data and how to achieve specific data behaviors with PDAL.

452 Chapter 13. Workshop

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. Typical LASzip (http://laszip.org) compression is 5:1 to 8:1, depending on the type of
LiDAR (https://en.wikipedia.org/wiki/Lidar). It is a compression format specifically for
the ASPRS LAS (http://www.asprs.org/Committee-General/LASer-LAS-File-Format-
Exchange-Activities.html) model, however, and will not be as efficient for other types of
point cloud data.

2. You can open and view LAZ data in web browsers using http://plas.io but we will be
using QGIS as examples.

Reprojection

Exercise

This exercise uses PDAL to reproject ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data

Issue the following command in your Conda Shell:

$ pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz \
./exercises/translation/csite-dd.laz reprojection \
--filters.reprojection.out_srs="EPSG:4326"

> pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz ^
./exercises/translation/csite-dd.laz reprojection ^
--filters.reprojection.out_srs="EPSG:4326"

Unfortunately this doesn’t produce the intended results for us. Issue the following pdal info
command to see why:

$ pdal info ./exercises/translation/csite-dd.laz --all \
| jq .stats.bbox.native.bbox
{

"maxx": 9.18,
"maxy": 48.79,
"maxz": 426.91,
"minx": 9.16,
"miny": 48.78,
"minz": 99.43

}

13.1. Point Cloud Processing and Analysis with PDAL 453

http://laszip.org
https://en.wikipedia.org/wiki/Lidar
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://plas.io
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

> pdal info ./exercises/translation/csite-dd.laz --all ^
| jq .stats.bbox.native.bbox
{

"maxx": 9.18,
"maxy": 48.79,
"maxz": 426.91,
"minx": 9.16,
"miny": 48.78,
"minz": 99.43

}

--all dumps all info (page 38) information about the file, and we can then use the jq
(https://stedolan.github.io/jq/) command to extract out the “native” (same coordinate system as
the file itself) bounding box.

We can see, the problem is we only have two decimal places of precision on the bounding box.
For geographic coordinate systems, this isn’t enough precision.

Printing the first point confirms this problem:

$ pdal info ./exercises/translation/csite-dd.laz -p 0
{
"file_size": 4609784,
"filename": "./exercises/translation/csite-dd.laz",
"now": "2022-05-13T13:34:23-0700",
"pdal_version": "2.4.0 (git-version: Release)",
"points":
{

"point":
{
"Blue": 0,
"Classification": 0,
"EdgeOfFlightLine": 0,
"GpsTime": 0,
"Green": 0,
"Intensity": 100,
"NumberOfReturns": 2,
"PointId": 0,
"PointSourceId": 0,
"Red": 0,
"ReturnNumber": 1,
"ScanAngleRank": 0,
"ScanDirectionFlag": 0,
"UserData": 0,

(continues on next page)

454 Chapter 13. Workshop

https://stedolan.github.io/jq/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"X": 9.17,
"Y": 48.78,
"Z": 316.88
}

},
"reader": "readers.las"
}

Some formats, like writers.las (page 162) do not automatically set scaling information. PDAL
cannot really do this for you because there are a number of ways to trip up. For
latitude/longitude data, you will need to set the scale to smaller values like 0.0000001.
Additionally, LAS uses an offset value to move the origin of the value. Use PDAL to set that to
auto so you don’t have to compute it.

$ pdal translate \
./exercises/analysis/ground/CSite1_orig-utm.laz \
./exercises/translation/csite-dd.laz reprojection \
--filters.reprojection.out_srs="EPSG:4326" \
--writers.las.scale_x=0.0000001 \
--writers.las.scale_y=0.0000001 \
--writers.las.offset_x="auto" \
--writers.las.offset_y="auto"
(pdal translate writers.las Warning) Auto offset for 'X' requested in␣
→˓stream mode. Using value of 9.16789.
(pdal translate writers.las Warning) Auto offset for 'Y' requested in␣
→˓stream mode. Using value of 48.7835.

> pdal translate ^
./exercises/analysis/ground/CSite1_orig-utm.laz ^
./exercises/translation/csite-dd.laz reprojection ^
--filters.reprojection.out_srs="EPSG:4326" ^
--writers.las.scale_x=0.0000001 ^
--writers.las.scale_y=0.0000001 ^
--writers.las.offset_x="auto" ^
--writers.las.offset_y="auto"
(pdal translate writers.las Warning) Auto offset for 'X' requested in␣
→˓stream mode. Using value of 9.16789.
(pdal translate writers.las Warning) Auto offset for 'Y' requested in␣
→˓stream mode. Using value of 48.7835.

Run the pdal info command again to verify the X, Y, and Z dimensions:

13.1. Point Cloud Processing and Analysis with PDAL 455

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

$ pdal info ./exercises/translation/csite-dd.laz --all \
| jq .stats.bbox.native.bbox
{

"maxx": 9.179032939,
"maxy": 48.78976523,
"maxz": 426.91,
"minx": 9.164037839,
"miny": 48.78345443,
"minz": 99.43

}

> pdal info ./exercises/translation/csite-dd.laz --all ^
| jq .stats.bbox.native.bbox
{

"maxx": 9.179032939,
"maxy": 48.78976523,
"maxz": 426.91,
"minx": 9.164037839,
"miny": 48.78345443,
"minz": 99.43

}

Notes

1. filters.reprojection (page 280) will use whatever coordinate system is defined by the point
cloud file, but you can override it using the in_srs option. This is useful in situations
where the coordinate system is not correct, not completely specified, or your system
doesn’t have all of the required supporting coordinate system dictionaries.

2. PDAL uses Proj.4 (http://proj4.org) library for reprojection. This library includes the
capability to do both vertical and horizontal datum transformations.

Entwine

Exercise

This exercise uses PDAL to fetch data from an Entwine index stored in an Amazon Web
Services object store (bucket). Entwine is a point cloud indexing strategy, which rearranges
points into a lossless octree structure known as EPT, for Entwine Point Tiles. The structure is
described here: https://entwine.io/entwine-point-tile.html.

EPT indexes can be used for visualization as well as analysis and data manipulation at any scale.

456 Chapter 13. Workshop

http://proj4.org
https://entwine.io/entwine-point-tile.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Examples of Entwine usage can be found from very fine photogrammetric surveys to
continental scale lidar management.

US Geological Survey (USGS) example data is here: https://usgs.entwine.io/

We will use a sample data set from Dublin, Ireland
https://viewer.copc.io/?r=https://na-c.entwine.io/dublin/ept.json

The JSON (https://en.wikipedia.org/wiki/JSON) file defines the pipeline which you were
previously creating in jq (https://stedolan.github.io/jq/). This simplifies the task and allows for
easy repetition of tasks. This pipeline will collect the sample data set and convert it to a COPC
(page 144) file.

1. View the ./exercises/translation/entwine.json file in your editor.

{
"pipeline": [

{
"type": "readers.ept",
"filename":"https://na-c.entwine.io/dublin/ept.

→˓json",
"resolution": 5

},
{

"type": "writers.copc",
"filename": "dublin.copc.laz",
"forward": "all"

}
]

}

Note: If you use the Developer Console
(https://developers.google.com/web/tools/chrome-devtools/console/) when
visiting http://speck.ly or http://potree.entwine.io, you can see the browser
making requests against the EPT resource at
http://na-c.entwine.io/dublin/ept.json

2. Issue the following command in your Conda Shell.

$ pdal pipeline ./exercises/translation/entwine.json -v 7
(PDAL Debug) Debugging...
(pdal pipeline readers.ept Debug) Root resolution: 21.3828
Query resolution: 5
Actual resolution: 2.67285
Depth end: 4

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 457

https://usgs.entwine.io/
https://viewer.copc.io/?r=https://na-c.entwine.io/dublin/ept.json
https://en.wikipedia.org/wiki/JSON
https://stedolan.github.io/jq/
https://developers.google.com/web/tools/chrome-devtools/console/
http://speck.ly
http://potree.entwine.io
http://na-c.entwine.io/dublin/ept.json

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Query bounds: ()
Threads: 15
(pdal pipeline Debug) Executing pipeline in stream mode.
(pdal pipeline writers.las Debug) Wrote 8034506 points to␣
→˓the LAS file

3. Verify that the COPC data look ok:

$ pdal info dublin.copc.laz | jq .stats.bbox.native.bbox
{

"maxx": -694128.96,
"maxy": 7049938.84,
"maxz": 385.37,
"minx": -699477.88,
"miny": 7044490.98,
"minz": -144.24

}
$ pdal info dublin.copc.laz -p 0
{

"file_size": 90310030,
"filename": "dublin.copc.laz",
"now": "2023-06-02T13:40:36-0500",
"pdal_version": "2.5.3 (git-version: Release)",
"points":
{
"point":
{
"ClassFlags": 0,
"Classification": 2,
"EdgeOfFlightLine": 0,
"GpsTime": 402930.3873,
"Intensity": 220,
"NumberOfReturns": 1,
"OriginId": 0,
"PointId": 0,
"PointSourceId": 34,
"ReturnNumber": 1,
"ScanAngleRank": 22.99799919,
"ScanChannel": 0,
"ScanDirectionFlag": 1,
"UserData": 0,
"X": -695085.89,
"Y": 7048577.02,

(continues on next page)

458 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
"Z": 7.8
}

},
"reader": "readers.las"

}

4. Visualize the data in QGIS

Note: QGIS also supports uploading Entwine data directly from the cloud. Under ‘Layer ->
Add Layer -> Add Point Cloud Layer’, select the source type as “Protocol: HTTP(S), cloud,
etc.” and insert the URL of an EPT index.

Notes

1. readers.ept (page 72) contains more detailed documentation about how to use PDAL’s
EPT reader.

13.1. Point Cloud Processing and Analysis with PDAL 459

../../_images/entwine-view.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

13.1.5 Manipulation

Finding the boundary

This exercise uses PDAL to find a tight-fitting boundary of an aerial scan. Printing the
coordinates of the boundary for the file is quite simple using a single pdal info call, but
visualizing the boundary is more complicated. To complete this exercise, we are going to use
QGIS (page 440) to view the boundary, which means we must first install it on our system.

Exercise

Note: We are going to run using the Uncompahgre data in the ./density directory.

$ pdal info ./exercises/analysis/density/uncompahgre.laz --boundary
{

"boundary":
{

"area": 90431700.63,
"avg_pt_per_sq_unit": 20.23338738,
"avg_pt_spacing": 2.580181288,
"boundary": "MULTIPOLYGON (((245561.32 4208409.0,245731.84␣

→˓4208556.7,246072.88 4208409.0,246371.29 4208630.5,246584.44 4208556.7,
→˓246882.84 4208778.2,247095.99 4208704.4,247394.4

...

. . . a giant blizzard of coordinate output scrolls across our terminal. Not very useful.

Instead, let’s generate some kind of vector output we can visualize with QGIS (page 440). The
pdal tindex is the “tile index” command, and it outputs a vector geometry file for each point
cloud file it reads. It generates this boundary using the same mechanism we invoked above –
filters.hexbin (page 336). We can leverage this capability to output a contiguous boundary of
the uncompahgre.laz file.

$ pdal tindex create --tindex ./exercises/analysis/boundary/boundary.
→˓sqlite \
--filespec ./exercises/analysis/density/uncompahgre.laz \
-f SQLite

> pdal tindex create --tindex ./exercises/analysis/boundary/boundary.
→˓sqlite ^
--filespec ./exercises/analysis/density/uncompahgre.laz ^
-f SQLite

460 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Once we’ve run the tindex (page 48), we can now visualize our output:

Open QGIS (page 440) and select Add Vector Layer:

Navigate to the exercises/analysis/boundary directory and then open the
boundary.sqlite file:

13.1. Point Cloud Processing and Analysis with PDAL 461

../../../_images/density-add-layer.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. The PDAL boundary computation is an approximation based on a hexagon tessellation.
It uses the software at http://github.com/hobu/hexer to do this task.

2. filters.hexbin (page 336) can also be used by the density (page 31) to generate a
tessellated surface. See the Visualizing acquisition density (page 477) example for steps
to achieve this.

3. The tindex (page 48) can be used to generate boundaries for large collections of data. A
boundary-based indexing scheme is commonly used in LiDAR processing, and PDAL
supports it through the tindex application. You can also use this command to merge
data together (query across boundaries, for example).

Clipping data with polygons

This exercise uses PDAL to apply to clip data with polygon geometries.

Note: This exercise is an adaption of the PDAL tutorial (page 409).

462 Chapter 13. Workshop

../../../_images/boundary-qgis-view.png
http://github.com/hobu/hexer

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Exercise

The autzen.laz file is a staple in PDAL and libLAS examples. You can download this file
here (https://github.com/PDAL/data/blob/master/autzen/autzen.laz) and move it to
./exercises/analysis/clipping in your drive. We will use this file to demonstrate
clipping points with a geometry. We’re going to clip out the stadium into a new COPC file.

Data preparation

The data are mixed in two different coordinate systems. The LAZ (page 89) file is in Oregon
State Plane Ft.
(http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx) and
the GeoJSON (http://geojson.org) defining the polygons, attributes.json, is in EPSG:4326
(http://epsg.io/4326). We have two options – project the point cloud into the coordinate system
of the attribute polygons, or project the attribute polygons into the coordinate system of the
points. The latter is preferable in this case because it will be less math and therefore less
computation. To make it convenient, we can utilize OGR (http://www.gdal.org)’s VRT
(http://www.gdal.org/drv_vrt.html) capability to reproject the data for us on-the-fly:

<OGRVRTDataSource>
<OGRVRTWarpedLayer>

<OGRVRTLayer name="OGRGeoJSON">
<SrcDataSource>./exercises/analysis/clipping/attributes.json

→˓</SrcDataSource>
(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 463

https://github.com/PDAL/data/blob/master/autzen/autzen.laz
https://github.com/PDAL/data/blob/master/autzen/autzen.laz
../../../_images/clipping-autzen-view.png
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://geojson.org
http://epsg.io/4326
http://www.gdal.org
http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
<SrcLayer>attributes</SrcLayer>
<LayerSRS>EPSG:4326</LayerSRS>

</OGRVRTLayer>
<TargetSRS>+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-

→˓120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_defs</
→˓TargetSRS>
</OGRVRTWarpedLayer>

</OGRVRTDataSource>

Note: This VRT file is available in your workshop materials in the
./exercises/analysis/clipping/attributes.vrt file. You will need to open this file,
go to line 4 and replace ./ with the correct path for your machine.

A GDAL or OGR VRT is a kind of “virtual” data source definition type that combines a
definition of data and a processing operation into a single, readable data stream.

Overlaying Attributes

To add our attributes.vrt file, perform the following:

1. In QGIS, select Layer -> Add Layer -> Add Vector Layer

2. Add attributes.vrt as the Vector Layer

3. Right click the new layer and select properties

4. Under “Symbology” on the left, select “categorized” from the drop-down

5. Change value from $id to cls

6. Below, select “Classify” and confirm

7. In the “Layer Rendering” drop-down, set “Opacity” to 50%

8. On the left, select “Labels”. Set the drop-down to “Single Labels”

9. Change value from id to cls and select “OK” on the bottom right

464 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: Notice the numbers on the buildings and trees. These are the classifations given in the
LIDAR Point Classes or LAS Specification
(https://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf). You can sort and
single out these in JSON filters. ex. "expression": "Classification >= 3 &&
Classification <= 4" which only shows classes 3 to 4 which are medium and high
vegetation.

13.1. Point Cloud Processing and Analysis with PDAL 465

../../../_images/clipping-view-polygons.png
https://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Table 1: ASPRS Standard LiDAR Point Classes (Point Data
Record Format 0-5)

Classification Value (bits 0:4) Meaning
0 Created, never classified
1 Unclassified
2 Ground
3 Low Vegetation
4 Medium Vegetation
5 High Vegetation
6 Building
7 Low Point (noise)
8 Model Key-point (mass point)
9 Water
10 Reserved for ASPRS Definition
11 Reserved for ASPRS Definition
12 Overlap Points
13-31 Reserved for ASPRS Definition

Note: The GeoJSON file does not have an externally-defined coordinate system, so we are
explicitly setting one with the LayerSRS parameter. If your data does have coordinate system
information, you don’t need to do that. See the OGR VRT documentation
(http://www.gdal.org/drv_vrt.html) for more details.

Pipeline breakdown

{
"pipeline": [

"./exercises/analysis/clipping/autzen.laz",
{

"column": "CLS",
"datasource": "./exercises/analysis/clipping/attributes.vrt

→˓",
"dimension": "Classification",
"layer": "OGRGeoJSON",
"type": "filters.overlay"

},
{

"expression": "Classification == 6",
"type": "filters.expression"

(continues on next page)

466 Chapter 13. Workshop

http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
{

"type": "writers.copc",
"filename": "./exercises/analysis/clipping/stadium.copc.laz

→˓",
"forward": "all"

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/clipping/clipping.json file. Remember to replace each of the
three occurrences of ./ in this file with the correct location for your machine.

1. Reader

autzen.laz is the LASzip (http://laszip.org) file we will clip.

2. filters.overlay

The filters.overlay (page 260) filter allows you to assign values for coincident polygons. Using
the VRT we defined in Data preparation (page 463), filters.overlay (page 260) will assign the
values from the CLS column to the Classification field.

3. filters.expression

The attributes in the attributes.json file include polygons with values 2, 5, and 6. We will
use filters.expression (page 310) to keep points with Classification values in the range of
6:6.

4. Writer

We will write our content back out using a writers.las (page 162).

13.1. Point Cloud Processing and Analysis with PDAL 467

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

The –nostream option disables stream mode. The point-in-polygon check (see notes) performs
poorly in stream mode currently.

$ pdal pipeline ./exercises/analysis/clipping/clipping.json --nostream

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
./exercises/analysis/clipping/stadium.copc.laz output. In the example below, we
opened the file to view it using QGIS.

468 Chapter 13. Workshop

../../../_images/clipping-stadium-clipped.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. filters.overlay (page 260) does point-in-polygon checks against every point that is read.

2. Points that are on the boundary are included.

Colorizing points with imagery

This exercise uses PDAL to apply color information from a raster onto point data. Point cloud
data, especially LiDAR (https://en.wikipedia.org/wiki/Lidar), do not often have coincident
color information. It is possible to project color information onto the points from an imagery
source. This makes it convenient to see data in a larger context.

Exercise

PDAL provides a filter (page 193) to apply color information from raster files onto point cloud
data. Think of this operation as a top-down projection of RGB color values on the points.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

1 {
2 "pipeline": [
3 "./exercises/analysis/thinning/uncompahgre.laz",
4 {
5 "type": "filters.colorization",
6 "raster": "./exercises/analysis/colorization/casi-2015-04-

→˓29-weekly-mosaic.tif"
7 },
8 {
9 "type": "filters.expression",

10 "expression": "Red >= 1"
11 },
12 {
13 "type": "writers.las",
14 "compression": "true",
15 "minor_version": "2",
16 "dataformat_id": "3",
17 "filename":"./exercises/analysis/colorization/uncompahgre-

→˓colored.laz"
18 },
19 {
20 "type": "writers.copc",
21 "filename": "./exercises/analysis/colorization/uncompahgre-

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 469

https://en.wikipedia.org/wiki/Lidar

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓colored.copc.laz",

22 "forward": "all"
23 }
24]
25 }

Note: This JSON file is available in your workshop materials in the
./exercises/analysis/colorization/colorize.json file. Remember to open this file
and replace each occurrence of ./ with the correct path for your machine.

Pipeline breakdown

1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

"./exercises/analysis/thinning/uncompahgre.laz",

2. filters.colorization

The filters.colorization (page 226) PDAL filter does most of the work for this operation. We’re
going to use the default data scaling options. This filter will create PDAL dimensions Red,
Green, and Blue.

{
"type": "filters.colorization",
"raster": "./exercises/analysis/colorization/casi-2015-04-29-weekly-

→˓mosaic.tif"
},

470 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3. filters.expression

A small challenge is the raster will colorize many points with NODATA values. We are going
to use the filters.expression (page 310) to filter keep any points that have Red >= 1.

{
"type": "filters.expression",
"expression": "Red >= 1"

},

4. writers.las

We could just define the uncompahgre-colored.laz filename, but we want to add a few
options to have finer control over what is written. These include:

{
"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "3",
"filename":"./exercises/colorization/analysis/uncompahgre-colored.

→˓laz"
}

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

3. dataformat_id: Format 3 supports both time and color information

5. writers.copc

We will then turn the uncompahgre-colored.laz into a COPC file for vizualization with
QGIS using the stage below.

{
"type": "writers.copc",
"filename": "./exercises/analysis/colorization/uncompahgre-colored.

→˓copc.laz"
"forward": "all"

}

13.1. Point Cloud Processing and Analysis with PDAL 471

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1. forward: List of header fields to be preserved from LAS input file. In this case, we want
all fields to be preserved.

Note: writers.las (page 162) and writers.copc (page 144) provide a number of possible options
to control how your LAS files are written.

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

$ pdal pipeline ./exercises/analysis/colorization/colorize.json

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
uncompahgre-colored.laz output. In the example below, we simply opened the file using
QGIS.

472 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. Applying color information that is not time-coincident with the point cloud data will
mean you will see discontinuities.

2. GDAL is used to read the image source. Any GDAL-readable data format can be used.

3. There are performance considerations to be aware of depending on the raster format and
type being used. See filters.colorization (page 226) for more information.

4. These data are of Uncompahgre Basin
(https://en.wikipedia.org/wiki/Uncompahgre_River) courtesy of the NASA Airborne
Snow Observatory (http://aso.jpl.nasa.gov/).

Removing noise

This exercise uses PDAL to remove unwanted noise in an airborne LiDAR collection.

Exercise

PDAL provides the outlier filter (page 206) to apply a statistical filter to data.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

{
"pipeline": [

"./exercises/analysis/denoising/18TWK820985.laz",
{

"type": "filters.outlier",
"method": "statistical",
"multiplier": 3,
"mean_k": 8

},
{

"type": "filters.expression",
"expression": "(Classification != 7) && (Z >= -100 && Z <=␣

→˓3000)"
},
{

"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"./exercises/analysis/denoising/clean.laz"

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 473

https://en.wikipedia.org/wiki/Uncompahgre_River
http://aso.jpl.nasa.gov/
http://aso.jpl.nasa.gov/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
},
{

"type": "writers.copc",
"filename": "./exercises/analysis/denoising/clean.copc.laz",
"forward": "all"

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/denoising/denoise.json file.

Pipeline breakdown

1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

"./exercises/analysis/denoising/18TWK820985.laz",

2. filters.outlier

The PDAL outlier filter (page 206) does most of the work for this operation.

{
"type": "filters.outlier",
"method": "statistical",
"multiplier": 3,
"mean_k": 8

},

474 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3. filters.expression

At this point, the outliers have been classified per the LAS specification as low/noise points
with a classification value of 7. The range filter (page 310) can remove these noise points by
constructing a range (page 310) with the value Classification != 7, which passes every
point with a Classification value not equal to 7.

Even with the filters.outlier (page 206) operation, there is still a cluster of points with
extremely negative Z values. These are some artifact or mis-computation of processing, and we
don’t want these points. We can construct another range (page 310) to keep only points that are
within the range −100 <= 𝑍 <= 3000.

Both ranges (page 310) are passed as a AND-separated list to the expression based range filter
(page 310) via the expression option.

{
"type": "filters.expression",
"expression": "Classification != 7 && (Z >= -100 && Z <= 3000)"

},

4. writers.las

We could just define the clean.laz filename, but we want to add a few options to have finer
control over what is written. These include:

{
"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"./exercises/analysis/denoising/clean.laz"

}

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

3. dataformat_id: Format 0 supports neither time nor color information

13.1. Point Cloud Processing and Analysis with PDAL 475

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

5. writers.copc

We will then turn the clean.laz file into a COPC file for vizualization with QGIS using the
stage below.

{
"type": "writers.copc",
"filename": "./exercises/analysis/colorization/clean.copc.laz"
"forward": "all"

}

1. forward: List of header fields to be preserved from LAS input file. In this case, we want
all fields to be preserved.

Note: writers.las (page 162) and writers.copc (page 144) provide a number of possible options
to control how your LAS files are written.

Execution

Invoke the following command, substituting accordingly, in your ` Shell`:

$ pdal pipeline ./exercises/analysis/denoising/denoise.json

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
clean.copc.laz output. In the example below, we simply opened the file using QGIS.

476 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. Control the aggressiveness of the algorithm with the mean_k parameter.

2. filters.outlier (page 206) requires the entire set in memory to process. If you have really
large files, you are going to need to split (page 327) them in some way.

Visualizing acquisition density

This exercise uses PDAL to generate a density surface. You can use this surface to summarize
acquisition quality.

Exercise

PDAL provides an application (page 31) to compute a vector field of hexagons computed with
filters.hexbin (page 336). It is a kind of simple interpolation, which we will use for
visualization in QGIS (http://qgis.org).

13.1. Point Cloud Processing and Analysis with PDAL 477

../../../_images/denoise-fugro.png
http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Command

Invoke the following command, substituting accordingly, in your Shell:

$ pdal density ./exercises/analysis/density/uncompahgre.laz \
-o ./exercises/analysis/density/density.sqlite \
-f SQLite

> pdal density ./exercises/analysis/density/uncompahgre.laz ^
-o ./exercises/analysis/density/density.sqlite ^
-f SQLite

Visualization

The command uses GDAL to output a SQLite (http://sqlite.org) file containing hexagon
polygons. We will now use QGIS (http://qgis.org) to visualize them.

1. Add a vector layer

2. Navigate to the output directory

478 Chapter 13. Workshop

http://sqlite.org
http://qgis.org
../../../_images/density-add-layer.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3. Add the density.sqlite file to the view

4. Right click on the density.sqlite layer in the Layers panel and then choose
Properties.

5. Within the Symbology tab, change Single Symbol to Graduated in the drop down

13.1. Point Cloud Processing and Analysis with PDAL 479

../../../_images/density-select-layer.png
../../../_images/density-file-open.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

6. Choose the Count column to visualize

480 Chapter 13. Workshop

../../../_images/density-graduated-symbols-pick.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7. Choose the Classify button to add intervals

13.1. Point Cloud Processing and Analysis with PDAL 481

../../../_images/density-count-attribute.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

8. Adjust the visualization as desired

482 Chapter 13. Workshop

../../../_images/density-Graduated-symbols.png
../../../_images/density-final-render.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. You can control how the density hexagon surface is created by using the options in
filters.hexbin (page 336).

The following settings will use a hexagon edge size of 24 units.

--filters.hexbin.edge_size=24

2. You can generate a contiguous boundary using PDAL (https://pdal.io/)’s tindex (page 48).

Thinning

This exercise uses PDAL to subsample or thin point cloud data. This might be done to
accelerate processing (less data), normalize point density, or ease visualization.

Exercise

As we showed in the Visualizing acquisition density (page 477) exercise, the points in the
uncompahgre.laz file are not evenly distributed across the entire collection. While we will not
get into reasons why that particular property is good or bad, we note there are three different
sampling strategies we could choose. We can attempt to preserve shape, we can try to randomly
sample, and we can attempt to normalize posting density. PDAL provides capability for all
three:

• Poisson using the filters.sample (page 301)

• Random using a combination of filters.decimation (page 297) and filters.randomize
(page 267)

• Voxel using filters.voxelcentroidnearestneighbor (page 308)

In this exercise, we are going to thin with the Poisson method, but the concept should operate
similarly for the filters.voxelcentroidnearestneighbor (page 308) approach.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal translate ./exercises/analysis/density/uncompahgre.laz \
2 ./exercises/analysis/thinning/uncompahgre-thin.copc.laz \
3 sample --filters.sample.radius=20

13.1. Point Cloud Processing and Analysis with PDAL 483

https://pdal.io/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 3: Thinning strategies available in PDAL

484 Chapter 13. Workshop

../../../_images/thinning-overview.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1 pdal translate ./exercises/analysis/density/uncompahgre.laz ^
2 ./exercises/analysis/thinning/uncompahgre-thin.copc.laz ^
3 sample --filters.sample.radius=20

By specifying our radius, we set the minimum distance between points to 20 meters.

Visualization

QGIS has the ability to switch on/off multiple data sets, and we are going to use that ability to
view both the uncompahgre.laz and the output uncompahgre-thin.copc.laz file.

Fig. 4: Selecting multiple data sets in QGIS

13.1. Point Cloud Processing and Analysis with PDAL 485

../../../_images/thinning-select-data.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 5: Uncompahgre thinned at a radius of 20m

486 Chapter 13. Workshop

../../../_images/thinning-poisson-thin.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. Poisson sampling is non-destructive. Points that are filtered with filters.sample
(page 301) will retain all attribute information.

Identifying ground

This exercise uses PDAL to classify ground returns using the Simple Morphological Filter
(SMRF) technique.

Note: This exercise is an adaptation of the Ground Filter Tutorial (page 414) tutorial on the
PDAL website by Brad Chambers. You can find more detail and example invocations there.

Exercise

The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with
ground vs. not-ground classifications. In this example, we will use an algorithm provided by
PDAL, the Simple Morphological Filter technique to generate a ground surface.

See also:

You can read more about the specifics of the Simple Morphological Filter (SMRF) (page 198)

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

$ pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz \
-o ./exercises/analysis/ground/ground.copc.laz \
smrf \
-v 4

> pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz ^
-o ./exercises/analysis/ground/ground.copc.laz ^
smrf ^
-v 4

As we can see, the algorithm does a great job of discriminating the points, but there’s a few
issues.

13.1. Point Cloud Processing and Analysis with PDAL 487

https://en.wikipedia.org/wiki/Digital_elevation_model

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

There’s noise underneath the main surface that will cause us trouble when we generate a terrain
surface.

488 Chapter 13. Workshop

../../../_images/ground-classified-included.png
../../../_images/ground-classified-included-side.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Filtering

We do not yet have a satisfactory surface for generating a DTM. When we visualize the output
of this ground operation, we notice there’s still some noise. We can stack the call to SMRF with
a call to a the filters.outlier technique we learned about in Removing noise (page 473).

1. Let us start by removing the non-ground data to just view the ground data:

$ pdal translate \
./exercises/analysis/ground/CSite1_orig-utm.laz \
-o ./exercises/analysis/ground/ground.copc.laz \
smrf expression \
--filters.expression.expression="Classification == 2" \
-v 4

> pdal translate ^
./exercises/analysis/ground/CSite1_orig-utm.laz ^
-o ./exercises/analysis/ground/ground.copc.laz ^
smrf expression ^
--filters.expression.expression="Classification == 2" ^
-v 4

2. Now we will instead use the translate (page 50) command to stack the filters.outlier
(page 206) and filters.smrf (page 198) stages:

$ pdal translate ./exercises/analysis/ground/CSite1_orig-utm.
→˓laz \
-o ./exercises/analysis/ground/denoised-ground-only.copc.laz \
outlier smrf expression \
--filters.outlier.method="statistical" \
--filters.outlier.mean_k=8 --filters.outlier.multiplier=3.0 \
--filters.smrf.ignore="Classification[7:7]" \
--filters.expression.expression="Classification == 2"

> pdal translate ./exercises/analysis/ground/CSite1_orig-utm.
→˓laz ^
-o ./exercises/analysis/ground/denoised-ground-only.copc.laz ^
outlier smrf expression ^
--filters.outlier.method="statistical" ^
--filters.outlier.mean_k=8 --filters.outlier.multiplier=3.0 ^
--filters.smrf.ignore="Classification[7:7]" ^
--filters.expression.expression="Classification == 2"

In this invocation, we have more control over the process. First the outlier filter merely
classifies outliers with a Classification value of 7. These outliers are then ignored during

13.1. Point Cloud Processing and Analysis with PDAL 489

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

SMRF processing with the ignore option. Finally, we add a range filter to extract only the
ground returns (i.e., Classification value of 2).

The result is a more accurate representation of the ground returns.

13.1.6 Generation

Generating a DTM

This exercise uses PDAL to generate an elevation model surface using the output from the
Identifying ground (page 487) exercise, PDAL’s writers.gdal (page 156) operation, and GDAL
(http://gdal.org/) to generate an elevation and hillshade surface from point cloud data.

Exercise

Note: The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with
ground classifications. We created this file, called denoised-ground-only.laz, in the
Identifying ground (page 487) exercise. Please produce that file by following that exercise
before starting this one.

490 Chapter 13. Workshop

../../../_images/ground-ground-only-view.png
http://gdal.org/
https://en.wikipedia.org/wiki/Digital_elevation_model

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Command

PDAL capability to generate rasterized output is provided by the writers.gdal (page 156) stage.
There is no application (page 27) to drive this stage, and we must use a pipeline.

Pipeline breakdown

{
"pipeline": [

"./exercises/analysis/ground/denoised-ground-only.copc.laz",
{

"filename":"./exercises/analysis/dtm/dtm.tif",
"gdaldriver":"GTiff",
"output_type":"all",
"resolution":"2.0",
"type": "writers.gdal"

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/dtm/gdal.json file. Make sure to edit the filenames to match
your paths.

1. Reader

denoised-ground-only is the COPC (https://copc.io) file we will clip. You should have
created this output as part of the Identifying ground (page 487) exercise.

2. writers.gdal

The writers.gdal (page 156) writer that bins the point cloud data into an elevation surface.

13.1. Point Cloud Processing and Analysis with PDAL 491

https://copc.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Execution

$ pdal pipeline ./exercises/analysis/dtm/gdal.json

Visualization

Something happened, and some files were written, but we cannot really see what was produced.
Let us use QGIS (page 440) to visualize the output.

1. Open QGIS (page 440) and Add Raster Layer:

2. Add the dtm.tif file from your ./exercises/analysis/dtm directory.

492 Chapter 13. Workshop

../../../_images/dtm-add-raster-mean.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

3. Go to Raster -> Analyze -> Fill nodata. . . and select the default values

13.1. Point Cloud Processing and Analysis with PDAL 493

../../../_images/dtm-qgis-added-no-fill.png
../../../_images/dtm-qgis-fill-nodata.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

4. Classify the DTM by right-clicking on the Filled and choosing Properties. Pick the
singleband pseudocolor for the rendering type, and then choose a color ramp and click
Classify.

5. QGIS (page 440) provides access to GDAL (http://gdal.org/) processing tools, and we are
going to use that to create a hillshade of our surface. Choose
Raster–>Analysis–>Hillshade:

494 Chapter 13. Workshop

../../../_images/dtm-qgis-added.png
../../../_images/dtm-qgis-colorize-dtm.png
http://gdal.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

6. Click the window for the Output file and select a location to save the hillshade.tif
file.

13.1. Point Cloud Processing and Analysis with PDAL 495

../../../_images/dtm-qgis-select-hillshade.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

7. Click OK and the hillshade of your DTM is now available

496 Chapter 13. Workshop

../../../_images/dtm-qgis-gdaldem.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. gdaldem (http://www.gdal.org/gdaldem.html), which powers the QGIS (page 440) DEM
tools, is a very powerful command line utility you can use for processing data.

2. writers.gdal (page 156) can be used for large data, but it does not interpolate a typical
TIN (https://en.wikipedia.org/wiki/Triangulated_irregular_network) surface model.

3. If you are missing the Raster tab, check your plugins in QGIS. If you have none
you may need to reinstall QGIS.

Creating surface meshes

This exercise uses PDAL to create surface meshes. PDAL is able to use a number of meshing
filters: https://pdal.io/en/latest/stages/filters.html. Three of these are ‘in the box’, without
needing plugins compiled. These are 2D Delaunay triangulation, Greedy projection meshing
and Poisson surface meshing.

In this exercise we’ll create a Poisson surface mesh - a watertight isosurface - from our input
point cloud.

13.1. Point Cloud Processing and Analysis with PDAL 497

../../../_images/dtm-qgis-hillshade-done.png
http://www.gdal.org/gdaldem.html
https://en.wikipedia.org/wiki/Triangulated_irregular_network
https://pdal.io/en/latest/stages/filters.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Exercise

We will create mesh models of a building and its surrounds using an entwine data input source.

After running each command, the output .ply file can be viewed in Meshlab or CloudCompare
(https://www.danielgm.net/cc/).

Note: Since QGIS doesn’t support .ply files we can’t use it for this exercise. In order to use
QGIS you can covert the files to OBJ or .copc using PDAL.

See also:

PDAL implements Mischa Kazhdan’s Poisson surface reconstruction algorithm. For details see
[Kazhdan2006]_

Note: This example will be using the output of using Clipping data with polygons (page 462)
exercise, specifically using stadium.copc.laz file. Please produce that file by following that
exercise before starting this one.

Note: writers.ply will write out mesh vertices by default. In this exercise we set the attribute
faces=”true”. Try using the ply writer without it. Also, if you’re using a machine with a lot of
processing power, try increasing the depth parameter for a more detailed mesh.

Mesh Command

Invoke the following command, substituting accordingly, in your Conda Shell:

$ pdal translate -i ./exercises/analysis/clipping/stadium.copc.laz \
-o ./exercises/analysis/meshing/first-mesh.ply \
poisson --filters.poisson.depth=16 \
--verbose 4

> pdal translate -i ./exercises/analysis/clipping/stadium.copc.laz ^
-o ./exercises/analysis/meshing/first-mesh.ply ^
poisson --filters.poisson.depth=16 ^
--verbose 4

(PDAL Debug) Debugging...
(pdal translate Debug) Executing pipeline in standard mode.
(pdal translate filters.poisson Debug) Computing normal vectors

498 Chapter 13. Workshop

https://www.danielgm.net/cc/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

You can view the mesh in Cloud Compare, you should see something similar to:

To colorize the points, select first-mesh in the left window. Under Properties set Colors
to RGB. You should see the following:

13.1. Point Cloud Processing and Analysis with PDAL 499

../../../_images/first-mesh.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Filtering

If we want to just mesh a building, or just terrain, or both we can apply a range filter based on
point classification. These data have ground labeled as class 2, and buildings as 6.

In this exercise we will create a poisson mesh surface of a building and the ground surrounding
it, using the same data subset as above and adding a filters.expression (page 310) stage to limit
the set of points used in mesh creation.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

$ pdal translate -i ./exercises/analysis/clipping/stadium.copc.laz \
-o ./exercises/analysis/meshing/building-exercise.ply \
range poisson \
--filters.range.limits="Classification[2:2],Classification[6:6]" \

(continues on next page)

500 Chapter 13. Workshop

../../../_images/first-mesh-rgb.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
--filters.poisson.depth=16 \
--verbose 4

> pdal translate -i ./exercises/analysis/clipping/stadium.copc.laz ^
-o ./exercises/analysis/meshing/building-exercise.ply ^
range poisson ^
--filters.range.limits="Classification[2:2],Classification[6:6]" ^
--filters.poisson.depth=16 ^
--verbose 4

(PDAL Debug) Debugging...
(pdal translate Debug) Executing pipeline in standard mode.
(pdal translate filters.poisson Debug) Computing normal vectors

Rasterizing Attributes

This exercise uses PDAL to generate a raster surface using a fully classified point cloud with
PDAL’s writers.gdal (page 156).

Exercise

Note: The exercise fetches its data from a Entwine (https://entwine.io) service that organizes
the point cloud collection for the entire country of Denmark. You can view the data online at
http://potree.entwine.io/data/denmark.html

13.1. Point Cloud Processing and Analysis with PDAL 501

https://entwine.io
http://potree.entwine.io/data/denmark.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Command

PDAL capability to generate rasterized output is provided by the writers.gdal (page 156) stage.
There is no application (page 27) to drive this stage, and we must use a pipeline.

Pipeline breakdown

{
"pipeline":[

{
"type":"readers.ept",
"filename":"https://na-c.entwine.io/dk/ept.json",
"bounds":"([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

},
{

"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uint16_t",
"output_type":"mean",
"resolution": 5

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/rasterize/classification.json file. Make sure to edit the
filenames to match your paths.

1. Reader

{
"type":"readers.ept",
"filename":"https://na-c.entwine.io/dk/ept.json",
"bounds":"([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

},

502 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The data is read from a EPT resource that contains the Denmark data. We’re going to download
a small patch of data by the Copenhagen airport area that is the limited to a spatial resolution of
5m.

2. writers.gdal

The writers.gdal (page 156) writer that bins the point cloud data with classification values.

{
"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uint16_t",
"output_type":"mean",
"resolution": 5

}

Execution

Issue the pipeline (page 55) operation to execute the interpolation:

$ pdal pipeline ./exercises/analysis/rasterize/classification.json -v 3
(PDAL Debug) Debugging...
(pdal pipeline readers.ept Debug) Root resolution: 3108.53
Query resolution: 5
Actual resolution: 3.03568
Depth end: 11
Query bounds: ([1402800, 1408800], [7478000, 7483000], [-1.
→˓797693134862316e+308, 1.797693134862316e+308])
Threads: 15
(pdal pipeline Debug) Executing pipeline in stream mode.

13.1. Point Cloud Processing and Analysis with PDAL 503

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Visualization

Basic interpolation of data with writers.gdal (page 156) will output raw classification values
into the resulting raster file. We will need to add a color ramp to the data for a satisfactory
preview.

Unfortunately, this does not give us a very satisfactory image to view. The reason is there is no
color ramp associated with the file, and we’re looking at pixel values with values from 0-31
according to the ASPRS LAS specification.

We want colors that correspond to the classification values a bit more directly. We can use a
color ramp to assign explicit values. QGIS (page 440) allows us to create a text file color ramp
that gdaldem can consume to apply colors to the data. The filename is
“./exercises/analysis/rasterize/ramp.txt”.

1 # QGIS Generated Color Map Export File
2 2 139 51 38 255 Ground
3 3 143 201 157 255 Low Veg
4 4 5 159 43 255 Med Veg
5 5 47 250 11 255 High Veg
6 6 209 151 25 255 Building
7 7 232 41 7 255 Low Point

(continues on next page)

504 Chapter 13. Workshop

../../../_images/rasterization-denmark-no-ramp.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
8 8 197 0 204 255 reserved
9 9 26 44 240 255 Water

10 10 165 160 173 255 Rail
11 11 81 87 81 255 Road
12 12 203 210 73 255 Reserved
13 13 209 228 214 255 Wire - Guard (Shield)
14 14 160 168 231 255 Wire - Conductor (Phase)
15 15 220 213 164 255 Transmission Tower
16 16 214 211 143 255 Wire-Structure Connector (Insulator)
17 17 151 98 203 255 Bridge Deck
18 18 236 49 74 255 High Noise
19 19 185 103 45 255 Reserved
20 21 58 55 9 255 255 Reserved
21 22 76 46 58 255 255 Reserved
22 23 20 76 38 255 255 Reserved
23 26 78 92 32 255 255 Reserved

With this ramp, you can load the color values into QGIS as a color ramp if you change the layer
to Palatted/Unique Values, and then load the color ramp file:

13.1. Point Cloud Processing and Analysis with PDAL 505

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

With the ramp, we can also use gdaldem (http://www.gdal.org/gdaldem.html) to apply it to a
new image:

$ gdaldem color-relief denmark-classification.tif ramp.txt classified-
→˓color.png -of PNG

506 Chapter 13. Workshop

../../../_images/rasterization-qgis-load-color-palette.png
http://www.gdal.org/gdaldem.html

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Intensity

With PDAL’s ability to override pipeline via commands, we can generate a relative intensity
image:

$ pdal pipeline ./exercises/analysis/rasterize/classification.json \
--writers.gdal.dimension="Intensity" \
--writers.gdal.data_type="float" \
--writers.gdal.filename="intensity.tif" \
-v 3
(PDAL Debug) Debugging...
(pdal pipeline readers.ept Debug) Root resolution: 3108.53
Query resolution: 5
Actual resolution: 3.03568
Depth end: 11
Query bounds: ([1402800, 1408800], [7478000, 7483000], [-1.
→˓797693134862316e+308, 1.797693134862316e+308])
Threads: 15
(pdal pipeline Debug) Executing pipeline in stream mode.
$ gdal_translate intensity.tif intensity.png -of PNG

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 507

../../../_images/rasterization-colored-classification.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Input file size is 1201, 1001
Warning 6: PNG driver doesn't support data type Float32. Only eight bit␣
→˓(Byte) and sixteen bit (UInt16) bands supported. Defaulting to Byte

0...10...20...30...40...50...60...70...80...90...100 - done.

> pdal pipeline ./exercises/analysis/rasterize/classification.json ^
--writers.gdal.dimension="Intensity" ^
--writers.gdal.data_type="float" ^
--writers.gdal.filename="intensity.tif" ^
-v 3
(PDAL Debug) Debugging...
(pdal pipeline readers.ept Debug) Root resolution: 3108.53
Query resolution: 5
Actual resolution: 3.03568
Depth end: 11
Query bounds: ([1402800, 1408800], [7478000, 7483000], [-1.
→˓797693134862316e+308, 1.797693134862316e+308])
Threads: 15
(pdal pipeline Debug) Executing pipeline in stream mode.
> gdal_translate intensity.tif intensity.png -of PNG
Input file size is 1201, 1001
Warning 6: PNG driver doesn't support data type Float32. Only eight bit␣
→˓(Byte) and sixteen bit (UInt16) bands supported. Defaulting to Byte

0...10...20...30...40...50...60...70...80...90...100 - done.

The same pipeline can be used to generate a preview image of the Intensity channel of the data
by overriding pipeline arguments at the command line.

508 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. writers.gdal (page 156) can output any dimension PDAL can provide, but it is is up to the
user to interpolate the values. For categorical data, neighborhood smoothing might
produce undesirable results, for example.

2. Pipeline (page 55) contains more information about overrides and organizing complex
pipelines.

Plotting a histogram

Exercise

PDAL doesn’t provide every possible analysis option, but it strives to make it convenient to link
PDAL to other places with substantial functionality. One of those is the Python/Numpy
universe, which is accessed through PDAL’s Python (page 375) bindings and the filters.python
(page 353) filter. These tools allow you to manipulate point cloud data with convenient Python
tools rather than constructing substantial C/C++ software to achieve simple tasks, compute
simple statistics, or investigate data quality issues.

13.1. Point Cloud Processing and Analysis with PDAL 509

../../../_images/rasterization-colored-intensity.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This exercise uses PDAL to create a histogram plot of all of the dimensions of a file. matplotlib
(https://matplotlib.org/) is a Python package for plotting graphs and figures, and we can use it
in combination with the Python (page 375) bindings for PDAL to create a nice histogram.
These histograms can be useful diagnostics in an analysis pipeline. We will combine a Python
script to make a histogram plot with a pipeline (page 41).

Note: Python allows you to enhance and build functionality that you can use in the context of
other Pipeline (page 55) operations.

PDAL Pipeline

We’re going to create a PDAL Pipeline (page 55) to tell PDAL to run our Python script in a
filters.python (page 353) stage.

1 {
2 "pipeline": [
3 {
4 "filename": "./exercises/python/athletic-fields.laz"
5 },
6 {
7 "type": "filters.python",
8 "function": "make_plot",
9 "module": "anything",

10 "pdalargs": "{\"filename\":\"./exercises/python/histogram.
→˓png\"}",

11 "script": "./exercises/python/histogram.py"
12 },
13 {
14 "type": "writers.null"
15 }
16]
17 }

Note: This pipeline is available in your workshop materials in the
./exercises/python/histogram.json file.

510 Chapter 13. Workshop

https://matplotlib.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Python script

The following Python script will do the actual work of creating the histogram plot with
matplotlib (https://matplotlib.org/). Store it as histogram.py next to the histogram.json
Pipeline (page 55) file above. The script is mostly regular Python except for the ins and outs
arguments to the function – those are special arguments that PDAL expects to be a dictionary
of Numpy dictionaries.

Note: This Python file is available in your workshop materials in the
./exercises/python/histogram.py file.

1 # import numpy
2 import numpy as np
3

4 # import matplotlib stuff and make sure to use the
5 # AGG renderer.
6 import matplotlib
7 matplotlib.use('Agg')
8 import matplotlib.pyplot as plt
9 import matplotlib.mlab as mlab

10

11 # This only works for Python 3. Use
12 # StringIO for Python 2.
13 from io import BytesIO
14

15 # The make_plot function will do all of our work. The
16 # filters.programmable filter expects a function name in the
17 # module that has at least two arguments -- "ins" which
18 # are numpy arrays for each dimension, and the "outs" which
19 # the script can alter/set/adjust to have them updated for
20 # further processing.
21 def make_plot(ins, outs):
22

23 # figure position and row will increment
24 figure_position = 1
25 row = 1
26

27 fig = plt.figure(figure_position, figsize=(6, 8.5), dpi=300)
28

29 for key in ins:
30 dimension = ins[key]
31 ax = fig.add_subplot(len(ins.keys()), 1, row)

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 511

https://matplotlib.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
32

33 # histogram the current dimension with 30 bins
34 n, bins, patches = ax.hist(dimension, 30,
35 density=0,
36 facecolor='grey',
37 alpha=0.75,
38 align='mid',
39 histtype='stepfilled',
40 linewidth=None)
41

42 # Set plot particulars
43 ax.set_ylabel(key, size=10, rotation='horizontal')
44 ax.get_xaxis().set_visible(False)
45 ax.set_yticklabels('')
46 ax.set_yticks((),)
47 ax.set_xlim(min(dimension), max(dimension))
48 ax.set_ylim(min(n), max(n))
49

50 # increment plot position
51 row = row + 1
52 figure_position = figure_position + 1
53

54 # We will save the PNG bytes to a BytesIO instance
55 # and the nwrite that to a file.
56 output = BytesIO()
57 plt.savefig(output,format="PNG")
58

59 # a module global variable, called 'pdalargs' is available
60 # to filters.programmable and filters.predicate modules that␣

→˓contains
61 # a dictionary of arguments that can be explicitly passed into
62 # the module by the user. We passed in a filename arg in our `pdal␣

→˓pipeline` call
63 filename = pdalargs['filename'] if 'filename' in pdalargs else

→˓'histogram.png'
64

65 # open up the filename and write out the
66 # bytes of the PNG stored in the BytesIO instance
67 with open(filename, 'wb') as o:
68 o.write(output.getvalue())
69

70

71 # filters.programmable scripts need to
(continues on next page)

512 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
72 # return True to tell the filter it was successful.
73 return True

Run pdal pipeline

$ pdal pipeline ./exercises/python/histogram.json
anything:47: UserWarning: Attempting to set identical low and high␣
→˓xlims makes transformation singular; automatically expanding.

13.1. Point Cloud Processing and Analysis with PDAL 513

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Output

514 Chapter 13. Workshop

../../../_images/python-histogram.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

1. writers.null (page 171) simply swallows the output of the pipeline. We don’t need to
write any data.

2. The pdalargs JSON needs to be escaped because a valid Python dictionary entry isn’t
always valid JSON.

Georeferencing

As discussed in the introduction (page 434), laser returns from a mobile LiDAR
(https://en.wikipedia.org/wiki/Lidar) system must be georeferenced, i.e. placed into a local or
global coordinate system by combining data from the laser and from a GNSS/IMU. As of this
writing, PDAL does not include generic georeferencing tools — this is considered future work.
However, the Optech (http://www.teledyneoptech.com/) csd file format includes both laser
return and GNSS/IMU data in the same file, and the PDAL csd reader includes built in
georeferencing support.

In this section, we will demonstrate how to georeference an Optech
(http://www.teledyneoptech.com/) csd file and reproject that file into a UTM projection.

Note: Optech’s (http://www.teledyneoptech.com/) csd format is just one of several
vendor-specific data formats PDAL supports; we also support data files directly from RIEGL
(http://riegl.com/) sensors and from several project-specific government platforms.

Exercise

The file S1C1_csd_004.csd contains airborne data from an Optech
(http://www.teledyneoptech.com/) sensor. Without georeferencing these points, they would be
impossible to interpret — once they are georeferenced, we will be able to inspect and analyze
these points like any other point cloud.

In addition to georeferencing, we are going to make two other tweaks to our point cloud:

• The point cloud is, by default, in WGS84
(https://en.wikipedia.org/wiki/Geodetic_datum), but we will reproject these points to a
UTM
(https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system)
coordinate system for visualization purposes.

• Because these are raw data coming from the sensor, these data are noisy. In particular,
there are a few points very close to the sensor which were probably caused by air returns
or laser light reflecting off of part of the airplane or sensor. These points have very high

13.1. Point Cloud Processing and Analysis with PDAL 515

https://en.wikipedia.org/wiki/Lidar
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://riegl.com/
http://www.teledyneoptech.com/
https://en.wikipedia.org/wiki/Geodetic_datum
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

intensity values, which will screw up our visualization. We will use the filters.expression
(page 310) PDAL filter to drop all points with very high intensity values.

Note: These data were provided by Dr. Craig Glennie and were collected by NCALM
(http://ncalm.cive.uh.edu/), the National Center for Airborne Laser Mapping. The collect area
is southwest of Austin, TX.

Command

Invoke the following command, substituting accordingly, into your Conda Shell:

$ pdal translate \
./exercises/georeferencing/S1C1_csd_004.csd \
./exercises/georeferencing/S1C1_csd_004.copc.laz \
reprojection expression \
--filters.reprojection.out_srs="EPSG:32614" \
--filters.expression.expression="Intensity >= 0 && Intensity <= 500"

> pdal translate ^
./exercises/georeferencing/S1C1_csd_004.csd ^
./exercises/georeferencing/S1C1_csd_004.copc.laz ^
reprojection expression ^
--filters.reprojection.out_srs="EPSG:32614" ^
--filters.expression.expression="Intensity >= 0 && Intensity <= 500"

Visualization

View your georeferenced point cloud in QGIS.

Batch Processing

PDAL doesn’t handle matching multiple file inputs except for glob handling for merge
operations, but does allow for command line substitution parameters to make batch processing
simpler, substitutions. Substitutions work with both Pipeline (page 55) operations as well as
with other applications such as translate (page 50).

516 Chapter 13. Workshop

http://ncalm.cive.uh.edu/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fig. 6: Our airborne laser point cloud after georeferencing, reprojection, and intensity filtering.

13.1. Point Cloud Processing and Analysis with PDAL 517

../../../_images/georeference-QGIS.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Operating system variations

How substitutions are passed generally depends on the operating system and tools available. In
the unix/linux environments, this is primarily using the find and ls programs to get lists of files
(either with directories or just filenames) and the xargs or parallel program to pass those files
to the pdal application (although -exec with find can also be used). These tools are available in
the docker environment if you are running PDAL under docker. They are also available under
Windows one installs Cygwin or MinGW. They are also available if Git for Windows is
installed. They are also available as win32 command line programs installed from the GNU
Findutils (https://www.gnu.org/software/findutils/findutils.html). They are available for
MacOS and Linux.

Windows native tools

Subtitions can be handled directly in windows using PowerShell syntax.

While there are a number of ways to generate lists of files, the Get-ChildItem is used here,
along with the foreach option to pass each separate filepath to the pdal application.

Example - Batch compression of LAS files to LAZ - PowerShell:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the PowerShell syntax would be:

PS ./exercises/batch> Get-ChildItem .\DIR1*.las | foreach {pdal␣
→˓translate -i .\DIR1\$($_.BaseName).las ^
-o .\DIR2\$($_.BaseName).laz}

Note the use of the $($_.BaseName) syntax for the files passed. This option on the $($_)
shortcut for the full filename, removes the directory and the extension on the file and allows the
user to set the path and extension manually.

Example - Parallel Batch compression of LAS files to LAZ - PowerShell:

This use of the PowerShell syntax doesn’t allow a user to execute more than one process at a
time. There is a free download of the xargs program that provides parallel execution available
at http://www.pirosa.co.uk/demo/wxargs/ppx2.exe. A clone of this program can be found at
https://github.com/ghuls/ppx2. For this tool, the file names are passed with using the {} syntax.

PS ./exercises/batch> Get-ChildItem .\dir1\ | Select-Object -
→˓ExpandProperty BaseName ^
| .\ppx2.exe -P 3 pdal translate -i ".\dir1\{}.las" -o ".\dir2\{}.laz"

518 Chapter 13. Workshop

https://www.gnu.org/software/findutils/findutils.html
http://www.pirosa.co.uk/demo/wxargs/ppx2.exe
https://github.com/ghuls/ppx2

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Unix/Linux native tools

Example - Batch compression of LAS files to LAZ - Bash:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the Bash syntax would be:

$ ls ./dir1/*.las | parallel -I{} \
pdal translate -i ./dir1/{/.}.las -o ./dir2/{/.}.laz

In Parallel, then {/.} syntax means strip the directory and the extension and just use the
basename of the file. This allows you to easily change the output format and the location.

Example - Parallel Batch compression of LAS files to LAZ - Bash:

Parallel, as its name implies, allows parallel operations. Adding the -j syntax indicates the
number simultaneous jobs to run

$ ls ./dir1/*.las | parallel -I{} -j 4 \
pdal translate -i ./dir1/{/.}.las -o ./dir2/{/.}.laz

Exercise - Pipeline Substitions:

For the most flexibility, pipelines are used to apply a series of operations to a file (or group of
files). In this exercise, we build on the Generating a DTM (page 490) pipeline example, but run
this pipeline over 4 files and reproject, calculate a bare earth using the filters.smrf (page 198)
filter, remove those points that aren’t bare earth with filters.expression (page 310) and then
write the output using the writers.gdal (page 156).

The pipeline we are using is:

{
"pipeline": [

{
"type":"readers.las"

},
{

"type": "filters.reprojection"
},
{

"type": "filters.smrf"
},

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 519

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type":"filters.expression",
"expression":"Classification == 2"

},
{

"gdaldriver":"GTiff",
"output_type":"idw",
"resolution" :"2.0",
"type": "writers.gdal"

}
]

}

You might have spotted that this pipeline doesn’t have any input or output file references, or a
value for the output spatial reference. We will be adding those at the command line, not within
the actual pipeline and using the substitutions syntax to do this.

PS ./exercises/batch> Get-ChildItem ./exercises/batch_
→˓processing/source/*.laz | ^
foreach {pdal pipeline ./exercises/batch_processing/batch_srs_
→˓gdal.json ^
--readers.las.filename=./source/$($_.BaseName).laz ^
--writers.gdal.filename=./dtm/$($_.BaseName).tif ^
--filters.reprojection.in_srs=epsg:3794 ^
--filters.reprojection.in_srs=epsg:32733}

$ ls ./exercises/batch_processing/source/*.laz | \
parallel -I{} pdal pipeline ./exercises/batch_processing/batch_
→˓srs_gdal.json \
--readers.las.filename={} \
--writers.gdal.filename=./exercises/batch_processing/dtm{/.}.
→˓tif \
--filters.reprojection.in_srs=epsg:3794 \
--filters.reprojection.out_srs=epsg:32733

Once you have your dtms created with pdal, combine them to a single file with:

$ gdalbuildvrt ./exercises/batch_processing/dtm.vrt ./exercises/batch_
→˓processing/dtm*.tif

You can then visualize the vrt with qgis. Add the vrt twice, and set the properties of the lower
layer to hillshade. Set the upper layer to Singleband PseudoColor and choose a pleasing color
ramp. Then set the transparency of the upper layer to 50% and you’ll get a nice display of the
terrain.

520 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

13.1.7 Final Project

The final project brings together a number of PDAL processing workflow operations into a
single effort It builds upon the exercises to enable you to use the capabilities of PDAL in a
coherent processing strategy, and it will give you ideas about how to orchestrate PDAL in the
context of larger data processing scenarios.

Given the following pipeline for fetching the data, complete the rest of the tasks:

{
"pipeline": [

(continues on next page)

13.1. Point Cloud Processing and Analysis with PDAL 521

../../../_images/batch-processing-dtm-qgis.png

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"type": "readers.ept",
"filename":"https://s3-us-west-2.amazonaws.com/usgs-lidar-

→˓public/MA_CentralEastern_1_2021/ept.json",
"bounds":"([-7911859.4, -7911077.0],[5213787.7, 5214543.3],

→˓[-40, 400])"
},
{

"type": "filters.expression",
"expression": "Classification < 20"

},
{

"type": "writers.las",
"compression": "true",
"minor_version": "4",
"dataformat_id": "0",
"filename":"public-garden.laz"

},
{

"type": "writers.copc",
"filename": "public-garden.copc.laz",
"forward": "all"

}
]

}

• Read data from an EPT resource using readers.ept (page 72) (See Entwine (page 456))

Note: The particular data we are pulling has some high classification values due to how it was
processed. These aren’t useful to us, and we can use filters.expression (page 310) in the
pipeline to only write points with a classification value under 20.

• Thin it to 1.0 meter spacing using filters.sample (page 301) (See Thinning (page 483))

• Filter out noise using filters.outlier (page 206) (See Removing noise (page 473))

• Classify ground points using filters.smrf (page 198) (See Identifying ground (page 487))

• Compute height above ground using filters.hag_nn (page 218)

• Generate a digital terrain model (DTM) using writers.gdal (page 156) (See Generating a
DTM (page 490))

• Find the average vegetative height model using writers.gdal (page 156)

522 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: You should review specific exercises for specifics on how to achieve each task.

13.1.8 Notes

Notes

13.1. Point Cloud Processing and Analysis with PDAL 523

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

524 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

13.1. Point Cloud Processing and Analysis with PDAL 525

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

526 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

13.1. Point Cloud Processing and Analysis with PDAL 527

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Notes

528 Chapter 13. Workshop

CHAPTER

FOURTEEN

DEVELOPMENT

14.1 Development

Developer documentation, such as how to update the docs, where the test frameworks are, who
develops the software, and conventions to use when developing new code can be found in this
section.

Note: Users looking for documentation on how to use PDAL’s command line applications
should look here (page 27) and users looking to use the PDAL API in their own applications
should look here (page 606).

14.1.1 PDAL Architecture Overview

Author
Andrew Bell

Contact
andrew@hobu.co

Date
5/15/2016

PDAL is a set of applications and library to facilitate translation of point cloud data between
various formats. In addition, it provides some facilities for transformation of data between
various geometric projections and can calculate some statistical, boundary and density data.
PDAL also provides point classification algorithms. PDAL provides an API that can be used by
programmers for integration into their own projects or to allow extension of existing
capabilities.

529

mailto:andrew@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The PDAL model

PDAL reads data from a set of input sources using format-specific readers. Point data can be
passed through various filters that transform data or create metadata. If desired, points can be
written to an output stream using a format-specific writer. PDAL can merge data from various
input sources into a single output source, preserving attribute data where supported by the input
and output formats.

The above diagram shows a possible arrangement of PDAL readers, filters and writers, all of
which are known as stages. Any merge operation or filter may be placed after any reader.
Output filters are distinct from other filters only in that they may create more than one set of
points to be further filtered or written. The arrangement of readers, filters and writers is called
a PDAL pipeline. Pipelines can be specified using JSON as detailed later.

Extending PDAL

PDAL is simple to extend by implementing subclasses of existing stages. All processing in
PDAL is completely synchronous. No parallel processing occurs, eliminating locking or other
concurrency issues. Understanding of several auxiliary classes is necessary to effectively create
a new stage.

530 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dimension

Point cloud formats support various data elements. In order to be useful, all formats must
provide some notion of location for points (X, Y and perhaps Z), but beyond that, the data
collected in formats may or may not have common data fields. Some formats predefine the
elements that make up a point. Other formats provide this information in a header or preamble.
PDAL calls each of the elements that make up a point a dimension. PDAL predefines the
dimensions that are in common use by the formats that it currently supports. Readers may
register their use of a predefined dimension or may have PDAL create a dimension with a name
and type as requested. Dimensions are described in a JSON file, Dimension.json.

PDAL has a default type (Double, Float, Signed32, etc.) for each of its predefined dimensions
which is believed to be sufficient to accurately hold the necessary data. Only when the default
data type is deemed insufficient should a request be made to “upgrade” a storage datatype.
There is no simple facility to “downsize” a dimension type to save memory, though it can be
done by creating a custom PointLayout object. Dimension.json can be examined to determine
the default storage type of each predefined dimension. In most cases knowledge of the storage
data type for a dimension isn’t required. PDAL properly converts data to and from the internal
storage type transparently. Invalid conversions raise an exception.

When a storage type is explicitly requested for a dimension, PDAL examines the existing
storage type and requested type and chooses the storage type so that it can hold both types. In
some cases this results in a storage type different from either the existing or requested storage
type. For instance, if the current storage type is a 16 bit signed integer (Signed16) and the
requested type is a 16 bit unsigned integer (Unsigned16), PDAL will use a 32 bit signed integer
as the storage type for the dimension so that both 16 bit storage types can be successfully
accommodated.

Point Layout

PDAL stores the dimension information in a point layout structure (PointLayout object). It
stores information about the physical layout of data of each point in memory and also stores the
type and name of each dimension.

Point Table

PDAL stores points in what is called a point table (PointTable object). Each point table has an
associated point layout describing its format. All points in a single point table have the same
dimensions and all operations on a PDAL pipeline make use of a single point table. In addition
to storing points, a point table also stores pipeline metadata that may be created as pipeline
stages are executed. Most functions receive a PointTableRef object, which refers to the active
point table. A PointTableRef can be stored or copied cheaply.

14.1. Development 531

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

A subclass of PointTable called FixedPointTable exists to allow a pipeline to run without
loading all points in memory. A FixedPointTable holds a fixed number of points. Some filters
can’t operate in streaming mode and an attempt to run a pipeline with a stage that doesn’t
support streaming will raise an exception. A custom implementation of this can be created by
inheriting from a class called StreamPointTable.

Point View

A point view (PointView object) stores references to points. Storage and retrieval of points is
done through a point view rather than directly through a point table. Point data is accessed
from a point view through a point ID (type PointId), which is an integer value. The first point
reference in a point view has a point ID of 0, the second has a point ID of 1, the third has a
point ID of 2 and so on. There are no null point references in a point view. The size of a point
view is the number of point references contained in the view. A point view acts like a
self-expanding array or vector of point references, but it is always full. For example, one can’t
set the field value of point with a PointId of 9 unless there already exist at least 8 point
references in the point view.

Point references can be copied from one point view to another by appending an existing
reference to a destination point view. The point ID of the appended point in the destination
view may be different than the point ID of the same point in the source view. The point ID of an
appended point reference is the same as the size of the point view after the operation. Note that
appending a point reference does not create a new point. Rather, it creates another reference to
an existing point. There are currently no built-in facilities for creating copies of points.

Point Reference

Some functions take a reference to a single point (PointRef object). In streaming mode, stages
implement the processOne() function which operates on a point reference instead of a point
view.

Making a Stage (Reader, Filter or Writer):

All stages (Stage object) share a common interface, though readers, filters and writers each have
a simplified interface if the generic stage interface is more complex than necessary. One should
create a new stage by creating a subclass of reader (Reader object), filter (Filter object) or writer
(Writer object). When a pipeline is made, each stage is created using its default constructor.

When a pipeline is started, each of its stages is processed in two distinct steps. First, all stages
are prepared.

532 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Stage Preparation

Preparation of a stage is done by calling the prepare() function of the stage at the end of the
pipeline. prepare() executes the following private virtual functions calls, none of which need to
be implemented in a stage unless desired. Each stage is guaranteed to be prepared after all
stages that precede it in the pipeline.

1) void addArgs(ProgramArgs& args)

Stages can accept various options to control processing. These options can be
declared and bound to variables in this function. When arguments are added,
the stage also provides a description and optionally a default value for the
argument.

2) void initialize() OR void initialize(PointTableRef)

Some stages, particularly readers, may need to do things such as open files to
extract header information before the next step in processing. Other general
processing that needs to take place before any stage is executed should occur
at this time. If the initialization requires knowledge of the point table,
implement the function that accepts one, otherwise implement the
no-argument version. Whether to place initialization code at this step or in
prepared() or ready() (see below) is a judgment call, but detection of errors
earlier in the process allows faster termination of a command. Files opened in
this step should also be closed before returning.

3) void addDimensions(PointLayoutPtr layout)

This method allows stages to inform a point table’s layout of the dimensions
that it would like as part of the record of each point. Usually, only readers add
dimensions to a point table, but there is no prohibition on filters or writers
from adding dimensions if necessary. Dimensions should not be added to the
layout outside of this method.

4) void prepared(PointTableRef)

Called after dimensions are added. It can be used to verify state and raise
exceptions before stage execution.

Stage Execution

After all stages are prepared, processing continues with the execution of each stage by calling
execute(). Each stage will be executed only after all stages preceding it in a pipeline have been
executed. A stage is executed by invoking the following private virtual methods. It is important
to note that ready() and done() are called only once for each stage while run() is called once for
each point view to be processed by the stage.

1) void ready(PointTablePtr table)

14.1. Development 533

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This function allows preprocessing to be performed prior to actual processing
of the points in a point view. For example, filters may initialize internal data
structures or libraries, readers may connect to databases and writers may write
a file header. If there is a choice between performing operations in the
preparation stage (in the initialize() method) or the execution stage (in
ready()), prefer to defer the operation until this point.

2) PointViewSet run(PointViewPtr buf)

This is the method in which processing of individual points occurs. One might
read points into the view, transform point values in some way, or distribute the
point references in the input view into numerous output views. This method is
called once for each point view passed to the stage.

3) void done(PointTablePtr table)

This function allows a stage to clean up resources not released by a stage’s
destructor. It also allows other execution of termination functions, such a
closing of databases, writing file footers, rewriting headers or closing or
renaming files.

Streaming Stage Execution

PDAL normally processes all points through each stage before passing the points to the next
stage. This means that all point data is held in memory during processing. There are some
situations that may make this undesirable. As an alternative, PDAL allows execution of data
with a point table that contains a fixed number of points (StreamPointTable). When a
StreamPointTable is passed to the execute() function, the private run() function detailed above
isn’t called, and instead processOne() is called for each point. If a StreamPointTable is passed
to execute() but a pipeline stage doesn’t implement processOne(), an exception is thrown.

bool processOne(PointRef& ref)

This method allows processing of a single point. A reader will typically read a
point from an input source. When a reader returns ‘false’ from this function, it
indicates that there are no more points to be read. When a filter returns ‘false’ from
this function, it indicates that the point just processed should be filtered out and not
passed to subsequent stages for processing.

534 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Implementing a Reader

A reader is a stage that takes input from a point cloud format supported by PDAL and loads
points into a point table through a point view.

A reader needs to register or assign those dimensions that it will reference when adding point
data to the point table. Dimensions that are predefined in PDAL can be registered by using the
point table’s registerDim() method. Dimensions that are not predefined can be added using
assignDim(). If dimensions are determined as named entities from a point cloud source, it may
not be known whether the dimensions are predefined or not. In this case the function
registerOrAssignDim() can be used. When a dimension is assigned, rather than registered, the
reader needs to inform PDAL of the type of the variable using the enumeration
Dimension::Type.

In this example, the reader informs the point table’s layout that it will reference the dimensions
X, Y and Z.

void Reader::addDimensions(PointLayoutPtr layout)
{

layout->registerDim(Dimension::Id::X);
layout->registerDim(Dimension::Id::Y);
layout->registerDim(Dimension::Id::Z);

}

Here a reader determines dimensions from an input source and registers or assigns them. All of
the input dimension values are in this case double precision floating point.

void Reader::addDimensions(PointLayoutPtr layout)
{

FileHeader header;

for (auto di = header.names.begin(), di != header.names.end(); ++di)
{

std::string dimName = *di;
Dimension::Id id = layout->registerOrAssignDim(dimName,

Dimension::Type::Double);
}

}

If a reader implements initialize() and opens a source file during the function, the file should be
closed again before exiting the function to ensure that file handles aren’t exhausted when
processing a large number of files.

Readers should use the ready() function to reset the input data to a state where the first point
can be read from the source. The done() function should be used to free resources or reset the
state initialized in ready().

14.1. Development 535

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Readers should implement a function, read(), that will place the data from the input source into
the provided point view:

point_count_t read(PointViewPtr view, point_count_t count)

The reader should read at most ‘count’ points from the input source and place them
in the view. The reader must keep track of its current position in the input source
and points should be read until no points remain or ‘count’ points have been added
to the view. The current location in the input source is typically tracked with a
integer variable called the index.

As each point is read from the input source, it must be placed at the end of the
point view. The ID of the end of the point view can be determined by calling size()
function of the point view. read() should return the number of points read by
during the function call.

point_count_t MyFormat::read(PointViewPtr view, point_count_t␣
→˓count)
{

// Determine the number of points remaining in the input.
point_count_t remainingInput = m_totalNumPts - m_index;

// Determine the number of points to read.
count = std::min(count, remainingInput);

// Determine the ID of the next point in the point view
PointId nextId = view->size();

// Determine the current input position.
auto pos = m_pointSize * m_index;

point_count_t remaining = count;
while (remaining--)
{

double x, y, z;

// Read X, Y and Z from input source.
x = m_file.read<double>(pos);
pos += sizeof(double);
y = m_file.read<double>(pos);
pos += sizeof(double);
z = m_file.read<double>(pos);
pos += sizeof(double);

// Set X, Y and Z into the pointView.
view->setField(Dimension::Id::X, nextId, x);

(continues on next page)

536 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
view->setField(Dimension::Id::Y, nextId, y);
view->setField(Dimension::Id::Z, nextId, z);

nextId++;
}
m_index += count;
return count;

}

Note that we don’t read more points than requested, we don’t read past the end of
the input stream and we keep track of our location in the input so that subsequent
calls to read() will result in all points being read.

Here’s the same function written so that streaming can be supported:

point_count_t MyFormat::read(PointViewPtr view, point_count_t␣
→˓count)
{

// Determine the number of points remaining in the input.
point_count_t remainingInput = m_totalNumPts - m_index;

// Determine the number of points to read.
count = std::min(count, remainingInput);

// Determine the ID of the next point in the point view
PointId nextId = view->size();

// Determine the current input position.
auto pos = m_pointSize * m_index;

point_count_t remaining = count;
while (remaining--)
{

PointRef point(view->point(nextId));

processOne(point);
nextId++;

}
m_index += count;
return count;

}

bool MyFormat::processOne(PointRef& point)
(continues on next page)

14.1. Development 537

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

double x, y, z;

// Read X, Y and Z from input source.
x = m_file.read<double>(pos);
pos += sizeof(double);
y = m_file.read<double>(pos);
pos += sizeof(double);
z = m_file.read<double>(pos);
pos += sizeof(double);

point.setField(Dimension::Id::X, x);
point.setField(Dimension::Id::Y, y);
point.setField(Dimension::Id::Z, z);
return m_file.ok();

}

Implementing a Filter

A filter is a stage that allows processing of data after it has been read into a pipeline’s point
table. In many filters, the only function that need be implemented is filter(), a simplified
version of the stage’s run() method whose input and output is a point view provided by the
previous stage:

void filter(PointViewPtr view)

One should implement filter() instead of run() if its interface is sufficient. The
expectation is that a filter will iterate through the points currently in the point view
and apply some transformation or gather some data to be output as pipeline
metadata.

Here as an example is the actual filter function from the reprojection filter:

void Reprojection::filter(PointViewPtr view)
{

for (PointId id = 0; id < view->size(); ++id)
{

double x = view->getFieldAs<double>(Dimension::Id::X,␣
→˓id);

double y = view->getFieldAs<double>(Dimension::Id::Y,␣
→˓id);

double z = view->getFieldAs<double>(Dimension::Id::Z,␣
→˓id);

(continues on next page)

538 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)

transform(x, y, z);

view->setField(Dimension::Id::X, id, x);
view->setField(Dimension::Id::Y, id, y);
view->setField(Dimension::Id::Z, id, z);

}
}

The filter simply loops through the points, retrieving the X, Y and Z values of each
point, transforms those value using a reprojection algorithm and then stores the
transformed values in the point table using the point view’s setField() function.

A filter may need to use the run() function instead of filter(), typically because it
needs to create multiple output point views from a single input view. The following
example puts every other input point into one of two output point views:

PointViewSet Alternator::run(PointViewPtr view)
{

PointViewSet viewSet;
PointViewPtr even = view();
PointViewPtr odd = view();
viewSet.insert(even);
viewSet.insert(odd);
for (PointId idx = 0; idx < view->size(); ++idx)
{

PointViewPtr out = idx % 2 ? even : odd;
out->appendPoint(*view.get(), idx);

}
return viewSet;

}

Implementing a Writer:

Analogous to the filter() method in a filter is the write() method of a writer. This function is
usually the appropriate one to override when implementing a writer – it would be unusual to
need to implement run(). A typical writer will open its output file when ready() is called, write
individual points in write() and close the file in done().

Like a filter, a writer may receive multiple point views during processing of a pipeline. This
will result in the write() function being called once for each of the input point views. Writers
may produce a separate output file for each input point view or may produce a single output
file. The documentation should clearly state this behavior. Placing a merge filter in front of a

14.1. Development 539

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

writer in the pipeline will make sure that a single point view is passed to the writer.

As new writers are created, developers should try to make sure that they behave reasonably if
passed multiple point views – they correctly handle write() being called multiple times after a
single call to ready().

void write(const PointViewPtr view)
{

ostream& out = *m_out;

for (PointId id = 0; id < view->size(); ++id)
{

out << setw(10) << view->getFieldAs<double>(Dimension::Id::X,␣
→˓id);

out << setw(10) << view->getFieldAs<double>(Dimension::Id::Y,␣
→˓id);

out << setw(10) << view->getFieldAs<double>(Dimension::Id::Z,␣
→˓id);

}
}

bool processOne(PointRef& point)
{

out << setw(10) << point.getFieldAs<double>(Dimension::Id::X);
out << setw(10) << point.getFieldAs<double>(Dimension::Id::Y);
out << setw(10) << point.getFieldAs<double>(Dimension::Id::Z);

}

14.1.2 Compilation

This section describes how to build and install PDAL under Windows, Linux, and Mac.

See also:

Download (page 13) contains links to installable binaries for Windows, OSX, and RHEL Linux
systems.

Contents:

540 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Unix Compilation

PDAL comes with support for building with CMake (https://cmake.org). PDAL requires at
least version 3.5 of CMake. CMake is a cross-platform meta-build system that provides a
unified system for building applications on multiple platforms with various build tools. CMake
has generators (https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html) for many
build tools, though PDAL has been tested only with Ninja (https://ninja-build.org/) and GNU
Makefiles (https://www.gnu.org/software/make/manual/make.html) on Unix/OSX. Ninja builds
PDAL faster, so the following instructions use that build tool, though building with GNU
Makefiles works similarly (simply replace “ninja” with “make” when running the build tool).

Note: The PDAL continuous integration
(https://github.com/PDAL/PDAL/tree/master/scripts/ci) provides example configuration and
build recipes for Linux, Windows, and OSX.

Dependencies

Building PDAL successfully depends on having other libraries configured and installed. These
dependencies (page 548) can be built from source or can be installed via a packaging system
(apt (https://help.ubuntu.com/lts/serverguide/apt.html) works well on Ubuntu and
Debian-based Linux systems. Conda (https://conda.io/en/latest/) works well on most systems.
Some have had success with brew (https://brew.sh/) on OSX systems.) Often, the only package
that needs to be installed prior to building PDAL is GDAL. Installing a GDAL package will
normally install other PDAL dependencies automatically.

$ apt install libgdal-dev

OR

$ conda install gdal

OR

$ brew install gdal

14.1. Development 541

https://cmake.org
https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html
https://ninja-build.org/
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://github.com/PDAL/PDAL/tree/master/scripts/ci
https://help.ubuntu.com/lts/serverguide/apt.html
https://conda.io/en/latest/
https://brew.sh/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Using Ninja on Linux or OSX

Get the source code

PDAL can be cloned from GitHub (page 14) or you can download a release bundle (page 13)

Prepare a build directory

CMake allows you to generate different builders for a project. Here we’re using Mac OSX, but
the procedure and output are nearly identical on Linux distributions.

$ cd PDAL
$ mkdir build
$ cd build

Run CMake

Running CMake uses the specified generator to create an environment suitable for building
PDAL with the requested tool. (Ninja in this case).

$ cmake -G Ninja ..
-- Numpy output: /usr/lib/python2.7/dist-packages/numpy/core/include
1.13.3

-- Could NOT find LIBEXECINFO (missing: LIBEXECINFO_LIBRARY)
-- Could NOT find LIBUNWIND (missing: LIBUNWIND_LIBRARY LIBUNWIND_
→˓INCLUDE_DIR)
-- The following features have been enabled:

* PostgreSQL PointCloud plugin, read/write PostgreSQL PointCloud␣
→˓objects
* Python plugin, add features that depend on python
* Unit tests, PDAL unit tests

-- The following OPTIONAL packages have been found:

* PkgConfig
* LibXml2
* Curl

-- The following REQUIRED packages have been found:
(continues on next page)

542 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)

* GDAL (required version >= 2.2.0)
Provides general purpose raster, vector, and reference system support

...
-- The following RECOMMENDED packages have not been found:

* LASzip (required version >= 3.1)
Provides LASzip compression

-- Configuring done
-- Generating done
-- Build files have been written to: /home/foo/pdal/build

Issue the ninja command

If cmake runs to completion (reports that build files have been written), you can run Ninja to
build PDAL.

$ ninja

If no errors are reported, Ninja will have created the pdal program in the bin directory. A set
of necessary support libraries will have been created in the lib directory.

$ ls bin/pdal
bin/pdal

$ ls lib/libpdalcpp*
lib/libpdalcpp.8.dylib
lib/libpdalcpp.dylib
lib/libpdalcpp.9.0.0.dylib

Checking the build and running PDAL tests

You can quickly check that PDAL has built properly by running the pdal info command.

$ bin/pdal info ../test/data/las/autzen_trim.las
{

"filename": "../test/data/las/autzen_trim.las",
"pdal_version": "1.8.0 (git-version: c39e62)",
"stats":

(continues on next page)

14.1. Development 543

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

"bbox":
{

"EPSG:4326":
{

"bbox":
{
"maxx": -123.0689038,
"maxy": 44.0515451,
"maxz": 158.651448,
"minx": -123.0734481,
"miny": 44.04990077,
"minz": 123.828048

},
...

CMake will normally build a set of tests that can be used to verify that PDAL executes most
functions properly. You can run these tests yourself if desired, though it’s not typically
necessary.

$ ctest
Test project /Users/foo/pdal.master/build

Start 1: pdal_filters_pcl_block_test
1/97 Test #1: pdal_filters_pcl_block_test Passed 0.
→˓23 sec

Start 2: pdal_filters_icp_test
2/97 Test #2: pdal_filters_icp_test Passed 0.
→˓12 sec

Start 3: pdal_filters_python_test
3/97 Test #3: pdal_filters_python_test Passed 3.
→˓52 sec

Start 4: pdal_io_numpy_test
4/97 Test #4: pdal_io_numpy_test Passed 0.
→˓31 sec
...

93/96 Test #93: pdal_io_ilvis2_metadata_test Passed 0.
→˓03 sec

Start 94: pdal_io_ilvis2_reader_metadata_test
94/96 Test #94: pdal_io_ilvis2_reader_metadata_test Passed 0.
→˓05 sec

Start 95: xml_schema_test
95/96 Test #95: xml_schema_test Passed 0.
→˓04 sec

(continues on next page)

544 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Start 96: pdal_io_ilvis2_test

96/96 Test #96: pdal_io_ilvis2_test Passed 0.
→˓04 sec

100% tests passed, 0 tests failed out of 96

Total Test time (real) = 39.54 sec

Failed tests may not indicate problems other than a lack of support for some feature on your
system. For example, tests for database drivers will fail if the database isn’t installed or
configured properly.

Install PDAL

PDAL can be installed to the default location (usually subdirectories of /usr/local) using Ninja.

$ ninja install

Building Under Windows

Author
Howard Butler

Contact
howard at hobu.co

Date
11/20/2020

Note: Conda (page 16) contains a pre-built up-to-date 64 bit Windows binary. It is
fully-featured, and if you do not need anything custom, it is likely the fastest way to get going.

Introduction

Pre-built binary packages for Windows are available via Conda (page 16) (64-bit version), and
all of the prerequisites required for compilation of a fully featured build are also available via
that packaging system. This document assumes you will be using Conda Forge as your base,
and anything more advanced is beyond the scope of the document.

14.1. Development 545

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Note: The GitHub Action build system uses the PDAL project’s configuration on the Conda
Forge system. It contains a rich resource of known working examples. See
https://github.com/PDAL/PDAL/blob/master/.github/workflows/win.yml and
https://github.com/PDAL/PDAL/tree/master/scripts/ci/win for inspiration.

Required Compiler

PDAL is known to compile on Visual Studio 2015
(https://www.visualstudio.com/vs/older-downloads/), and 2013 might work with some source
tree adjustments. PDAL makes heavy use of C++11, and a compiler with good support for
those features is required.

Prerequisite Libraries

PDAL uses the GitHub Actions (https://github.com/PDAL/PDAL/actions) continuous
integration platform for building and testing itself on Windows. The configuration that PDAL
uses is valuable raw materials for configuring your own environment because the PDAL team
must keep it up to date with both the Conda (page 16) environment and the Microsoft compiler
situation.

You can see the current configuration at
https://github.com/PDAL/PDAL/blob/master/.github/workflows/win.yml The most interesting
bits are the Setup step, the CMake step, and the Compile scripts. The configuration already
has Miniconda installed, and the setup.sh script installs all of PDAL’s prerequisites via the
command line.

conda install geotiff laszip nitro curl ^
gdal pcl cmake eigen ninja libgdal ^
zstd numpy xz libxml2 laz-perf qhull ^
sqlite hdf5 tiledb conda-build ninja -y

Note: The package list here might change over time. The canonnical location to learn the
prerequisite list for PDAL is the scripts/ci/win directory in PDAL’s source tree.

546 Chapter 14. Development

https://github.com/PDAL/PDAL/blob/master/.github/workflows/win.yml
https://github.com/PDAL/PDAL/tree/master/scripts/ci/win
https://www.visualstudio.com/vs/older-downloads/
https://github.com/PDAL/PDAL/actions
https://github.com/PDAL/PDAL/blob/master/.github/workflows/win.yml

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Fetching the Source

Get the source code for PDAL. Presumably you have GitHub for Windows
(https://desktop.github.com/) or something like it. Run a “git shell” and clone the repository
into the directory of your choice.

c:\dev> git clone https://github.com/PDAL/PDAL.git

Switch to the -maintenance branch.

c:\dev> git checkout 1.9-maintenance

Note: PDAL’s active development branch is master, and you are welcome to
build it, but is not as stable as the major-versioned release branches are likely to be.

Configuration

PDAL uses CMake (http://www.cmake.org) for its build configuration. You will need to install
CMake and have it available on your path to configure PDAL.

Invoke your cmake command to configure the PDAL.

cmake -G "NMake Makefiles" .

A fully-featured build will require more specification of libraries, enabled features, and their
locations. For more information on this, users can refer to the examples.sh step in the Action.

Note: Placing your command in a .bat file will make for easy reuse.

Building

If you chose NMake Makefiles as your CMake generator, you can invoke the build by calling
nmake:

nmake /f Makefile

If you chose “Visual Studio 14 Win64” as your CMake generator, open PDAL.sln and chose
your configuration to build.

14.1. Development 547

https://desktop.github.com/
http://www.cmake.org

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Running

After you’ve built the tree, you can run pdal.exe by issuing it

c:\dev\pdal\bin\pdal.exe

Note: You may need to have your Conda environment active to enable access to PDAL’s
dependencies.

Dependencies

Note: The absolute best source of build and configuration examples is the PDAL GitHub
repository. Specifically, the continuous integration scripts at
https://github.com/PDAL/PDAL/tree/master/scripts/ci

PDAL depends on a number of libraries to do its work. Make sure those dependencies are
installed on your system before installing PDAL or use a packaging system that will
automatically load prerequisites. Packaging system such as apt
(https://help.ubuntu.com/lts/serverguide/apt.html) or Conda (https://conda.io/en/latest/) can be
used to install dependencies on your system.

Required Dependencies

GDAL (3.0+)

PDAL uses GDAL for spatial reference system description manipulation, and image reading
supporting for the NITF driver. In conjunction with GeoTIFF (http://trac.osgeo.org/geotiff),
GDAL is used to convert GeoTIFF keys and OGC WKT SRS description strings into formats
required by specific drivers.

Source: https://github.com/OSGeo/gdal
Conda: https://anaconda.org/conda-forge/gdal

548 Chapter 14. Development

https://github.com/PDAL/PDAL/tree/master/scripts/ci
https://help.ubuntu.com/lts/serverguide/apt.html
https://conda.io/en/latest/
http://trac.osgeo.org/geotiff

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

GeoTIFF (1.3+)

PDAL uses GeoTIFF in conjunction with GDAL for GeoTIFF key support in the LAS driver.
GeoTIFF is typically a dependency of GDAL, so installing GDAL from a package will
generally install GeoTIFF as well.

Source: https://github.com/OSGeo/libgeotiff
Conda: https://anaconda.org/conda-forge/geotiff

Note: GDAL surreptitiously embeds a copy of GeoTIFF (http://trac.osgeo.org/geotiff) in its
library build but there is no way for you to know this. In addition to embedding libgeotiff, it
also strips away the library symbols that PDAL needs, meaning that PDAL can’t simply link
against GDAL (http://www.gdal.org). If you are building both of these libraries yourself, make
sure you build GDAL using the “External libgeotiff” option, which will prevent the insanity
that can ensue on some platforms. Conda Forge (https://anaconda.org/conda-forge/pdal) users,
including those using that platform to link and build PDAL themselves, do not need to worry
about this issue.

Plugin Dependencies

PDAL comes with optional plugin stages that require other libraries in order to run. Many of
these libraries are licensed in a way incompatible with the PDAL license or they may be
commercial products that require purchase.

Nitro (Requires specific source package)

Nitro is a library that provides NITF
(http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format) support for PDAL to
write LAS-in-NITF files for writers.nitf (page 168). You must use the specific version of Nitro
referenced below for licensing and compatibility reasons.:

Source: http://github.com/hobu/nitro

14.1. Development 549

http://trac.osgeo.org/geotiff
http://www.gdal.org
https://anaconda.org/conda-forge/pdal
http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

TileDB (1.4.1+)

TileDB (https://www.tiledb.io) is an efficient multi-dimensional array management system
which introduces a novel on-disk format that can effectively store dense and sparse array data
with support for fast updates and reads. It features excellent compression, and an efficient
parallel I/O system with high scalability. It is used by writers.tiledb (page 185) and
readers.tiledb (page 133).:

Source: https://github.com/TileDB-Inc/TileDB
Conda: https://anaconda.org/conda-forge/tiledb

14.1.3 Errors and Error Handling

Exceptions

PDAL typically throws a std::runtime_error for error conditions that is catchable as
pdal::pdal_error.

PDAL Position on (Non)conformance

PDAL proudly and unabashedly supports formal standards/specifications for file formats. We
recognize, however, that in some cases files will not follow a given standard precisely, due to an
unclear spec or simply out of carelessness.

When reading files that are not formatted correctly:

• PDAL may try to compensate for the error. This is typically done when as a practical
matter the market needs support for well-known or pervasive, but nonetheless “broken”,
upstream implementations.

• PDAL may explicitly reject such files. This is typically done where we do not wish to
continue to promote or support mistakes that should be fixed upstream.

PDAL will strive to write correctly formatted files. In some cases, however, PDAL may choose
to offer as an option the ability to break the standard if, as a practical matter, doing so would
significantly aid the market. Such an option would never be the default behavior, however.

For files that are conformant but which lie, such as the extents in the header being wrong, we
will generally offer both the ability to propagate the “wrong” information and the ability to
helpfully correct it on the fly; the latter is generally our default position.

550 Chapter 14. Development

https://www.tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.1.4 Metadata

In addition to point data, PDAL stores metadata during the processing of a pipeline. Metadata
is stored internally as strings, though the API accepts a variety of types that are automatically
converted as necessary. Each item of metadata consists of a name, a description (optional), a
value and a type. In addition, each item of metadata can have a list of child metadata values.

Metadata is made available to users of PDAL through a JSON tree. Commands such as pdal
pipeline (page 41) and pdal translate (page 50) provide options to allow the JSON-formatted
metadata created by PDAL to be written to a file.

Metadata Nodes

Each item of metadata is stored in an object known as a MetadataNode. Metadata nodes are
reference types that can be copied cheaply. Metadata nodes are annotated with the original data
type to allow better interpretation of the data. For example, when binary data is stored in a base
64-encoded format, knowing that the data doesn’t ultimately represent a string can allow
algorithms to convert it back to its binary representation when desired. Similarly, knowing that
data is numeric allows it to be written as a JSON numeric type rather than as a string.

The name of a metadata node is immutable. If you wish to add a copy of metadata (and
subchildren) to some node using a different name, you need to call the provided function
“clone()”.

A metadata node is added as a child to another node using add(). Usually the type of the data
assigned to the metadata node is determined through overloading, but there are instances where
this is impossible and the programmer must call a specific function to set the type of the
metadata node. Binary data that has been converted to a string by base 64 encoding can be
tagged as a such by calling addEncoded(). Programmers can specify the type of a node
explicitly by calling addWithType(). Currently supported types are: “boolean”, “string”,
“float”, “double”, “bounds”, “nonNegativeInteger”, “integer”, “uuid” and “base64Binary”.

Metadata nodes can be presented as lists when transformed to JSON. If multiple nodes with the
same name are added to a parent node, those subnodes will automatically be tagged as list
nodes and will be enclosed in square brackets. Single nodes can be forced to be treated as
JSON lists by calling addList() instead of add() on a parent node.

Metadata and Stages

Stages in PDAL each have a base metadata node. You can retrieve a stage’s metadata node by
calling getMetadata(). When a PDAL pipeline is run, its metadata is organized as a list of stage
nodes to which subnodes have been added. From within the implementation of a stage,
metadata is typically added similarly to the following:

14.1. Development 551

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

MetadataNode root = getMetadata();
root.add("nodename", "Some string data");
root.add("intlist", 45);
root.add("intlist", 55);
Uuid nullUuid;
MetadataNode pnode("parent");
root.add(pnode);
pnode.add("nulluuidnode", nullUuid);
pnode.addList("num_in_list", 66);

If the above code was part of a stage “writers.test”, a transformation to JSON would produce
the following output:

{
"writers.test":
{
"intlist":
[

45,
55

],
"nodename": "Some string data",
"parent":
{
"nulluuidnode": "00000000-0000-0000-0000-000000000000",
"num_in_list":
[

66
]

}
}

}

14.1.5 Writing with PDAL

Author
Bradley Chambers

Contact
brad.chambers@gmail.com

Date
11/02/2017

552 Chapter 14. Development

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This tutorial will describe a complete example of using PDAL C++ objects to write a LAS file.
The example will show fetching data from your own data source rather than interacting with a
PDAL stage.

Note: If you implement your own Readers (page 65) that conforms to PDAL’s pdal::Stage
(page 646), you can implement a simple read-filter-write pipeline using Pipeline (page 55) and
not have to code anything explicit yourself.

Includes

First, our code.

#include <pdal/PointView.hpp>
#include <pdal/PointTable.hpp>
#include <pdal/Dimension.hpp>
#include <pdal/Options.hpp>
#include <pdal/StageFactory.hpp>

#include <io/BufferReader.hpp>

#include <vector>

void fillView(pdal::PointViewPtr view)
{

struct Point
{

double x;
double y;
double z;

};

for (int i = 0; i < 1000; ++i)
{

Point p;

p.x = -93.0 + i*0.001;
p.y = 42.0 + i*0.001;
p.z = 106.0 + i;

view->setField(pdal::Dimension::Id::X, i, p.x);
view->setField(pdal::Dimension::Id::Y, i, p.y);
view->setField(pdal::Dimension::Id::Z, i, p.z);

(continues on next page)

14.1. Development 553

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
}

}

int main(int argc, char* argv[])
{

using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;
table.layout()->registerDim(Dimension::Id::X);
table.layout()->registerDim(Dimension::Id::Y);
table.layout()->registerDim(Dimension::Id::Z);

PointViewPtr view(new PointView(table));

fillView(view);

BufferReader reader;
reader.addView(view);

StageFactory factory;

// StageFactory always "owns" stages it creates. They'll be␣
→˓destroyed with the factory.

Stage *writer = factory.createStage("writers.las");

writer->setInput(reader);
writer->setOptions(options);
writer->prepare(table);
writer->execute(table);

}

Take a closer look. We will need to include several PDAL headers.

#include <pdal/PointView.hpp>
#include <pdal/PointTable.hpp>
#include <pdal/Dimension.hpp>
#include <pdal/Options.hpp>
#include <pdal/StageFactory.hpp>

(continues on next page)

554 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
#include <io/BufferReader.hpp>

BufferReader will not be required by all users. Here is it used to populate a bare PointBuffer.
This will often be accomplished by a Reader stage.

Instead of directly including headers for individual stages, e.g., LasWriter, we rely on the
StageFactory which has the ability to query available stages at runtime and return pointers to
the created stages.

We proceed by providing a mechanism for generating dummy data for the x, y, and z
dimensions.

void fillView(pdal::PointViewPtr view)
{

struct Point
{

double x;
double y;
double z;

};

for (int i = 0; i < 1000; ++i)
{

Point p;

p.x = -93.0 + i*0.001;
p.y = 42.0 + i*0.001;
p.z = 106.0 + i;

view->setField(pdal::Dimension::Id::X, i, p.x);
view->setField(pdal::Dimension::Id::Y, i, p.y);
view->setField(pdal::Dimension::Id::Z, i, p.z);

int main(int argc, char* argv[])
{

using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;

Finally, the main code which creates the dummy data, puts it into a BufferReader and sends it to
a writer.

14.1. Development 555

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

int main(int argc, char* argv[])
{

using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;
table.layout()->registerDim(Dimension::Id::X);
table.layout()->registerDim(Dimension::Id::Y);
table.layout()->registerDim(Dimension::Id::Z);

PointViewPtr view(new PointView(table));

fillView(view);

BufferReader reader;
reader.addView(view);

StageFactory factory;

// StageFactory always "owns" stages it creates. They'll be␣
→˓destroyed with the factory.

Stage *writer = factory.createStage("writers.las");

writer->setInput(reader);
writer->setOptions(options);
writer->prepare(table);
writer->execute(table);

Compiling and running the program

Note: Refer to Compilation (page 540) for information on how to build PDAL.

To build this example, simply copy the files tutorial.cpp and CMakeLists.txt from the
examples/writing directory of the PDAL source tree.

cmake_minimum_required(VERSION 3.6)
project(WritingTutorial)

find_package(PDAL 2.0.0 REQUIRED CONFIG)
(continues on next page)

556 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_executable(tutorial tutorial.cpp)

target_link_libraries(tutorial PRIVATE ${PDAL_LIBRARIES})
target_include_directories(tutorial PRIVATE

${PDAL_INCLUDE_DIRS}
${PDAL_INCLUDE_DIRS}/pdal)

Note: Refer to CMake (page 585) for an explanation of the basic CMakeLists.

Begin by configuring your project using CMake (shown here on Unix) and building using make.

$ cd /PATH/TO/WRITING/TUTORIAL
$ mkdir build
$ cd build
$ cmake ..
$ make

After the project is built, you can run it by typing:

$./tutorial

Streaming

Writing in streaming mode creates and writes the cloud one point at a time, and the
implementation is somewhat different. An example is given in
examples/writing-streamer.

14.1.6 Writing and building a PDAL Plugin

Author
Andrew Bell

Contact
andrew.bell.ia@gmail.com

Date
11/09/2021

14.1. Development 557

mailto:andrew.bell.ia@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

A PDAL plugin is a specially-named dynamically linked library that serves as a stage or a
kernel (PDAL command). The PDAL program will be able to use a properly-made plugin
when it is placed in an appropriate location. PDAL will search the following paths (relative to
the current working directory) for plugins: ., ./lib, ../lib, ./bin, ../bin. You can also
override the default search path by setting the environment variable PDAL_DRIVER_PATH to a
list of directories that pdal should search for plugins.

PDAL stage plugins must be named:

libpdal_plugin_<plugin type>_<plugin name>.<shared library extension>

where plugin name is one of reader, writer or filter.

PDAL kernel plugins must be named:

libpdal_plugin_kernel_<plugin name>.<shared library extension>

See the tutorials Writing a reader (page 567), Writing a filter (page 559) or Writing a writer
(page 577) for step-by-step instructions on creating a PDAL stage plugin. See Writing a kernel
(page 563) for similar information on creating a PDAL kernel plugin. The tutorials provide a
sample CMakeLists.txt that can serve as a basis for building your plugin with a PDAL
installation. A simple macro, PDAL_CREATE_PLUGIN, is now provided with PDAL that makes
it even easier to build a plugin. You can use the macro by creating a file called CMakeLists.txt
like this:

cmake_minimum_required(VERSION 3.5)
project(MY_READER LANGUAGES CXX)
find_package(PDAL REQUIRED)

set(SRCS MyGoodReader.cpp)

PDAL_CREATE_PLUGIN(
TYPE reader
NAME mygood
VERSION 1.0
SOURCES ${SRCS}

)

Once your plugin is built, copy it to an appropriate location so that it can be found by PDAL
and it should load and run. If your plugin doesn’t load, Use the PDAL –debug option to get
information about the plugin loading process.

558 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.1.7 Writing a filter

PDAL can be extended through the development of filter functions.

See also:

For more on filters and their role in PDAL, and their lifecycle please refer to PDAL Architecture
Overview (page 529).

Every filter stage in PDAL is implemented as a plugin (sometimes referred to as a “driver”).
Filters native to PDAL, such as filters.ferry (page 263), are implemented as static filters and are
statically linked into the PDAL library. Filters that require extra/optional dependencies, or are
external to the core PDAL codebase altogether, such as filters.python (page 353), are
implemented as shared filters, and are built as individual shared libraries, discoverable by
PDAL at runtime.

In this tutorial, we will give a brief example of a filter, with notes on how to make it static or
shared.

The header

First, we provide a full listing of the filter header.

1 // MyFilter.hpp
2

3 #pragma once
4

5 #include <pdal/pdal_internal.hpp>
6 #include <pdal/Filter.hpp>
7

8 namespace pdal
9 {

10

11 class PDAL_DLL MyFilter : public Filter
12 {
13 public:
14 MyFilter() : Filter()
15 {}
16 std::string getName() const;
17

18 private:
19 double m_value;
20 Dimension::Id m_myDimension;
21

22 virtual void addDimensions(PointLayoutPtr layout);
(continues on next page)

14.1. Development 559

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
23 virtual void addArgs(ProgramArgs& args);
24 virtual PointViewSet run(PointViewPtr view);
25

26 MyFilter& operator=(const MyFilter&); // not implemented
27 MyFilter(const MyFilter&); // not implemented
28 };
29

30 } // namespace pdal

This header should be relatively straightforward, but we will point out one method that must be
declared for the plugin interface to be satisfied.

std::string getName() const;

In many instances, you should be able to copy this header template verbatim, changing only the
filter class name, includes, and member functions/variables as required by your implementation.

The source

Again, we start with a full listing of the filter source.

1 // MyFilter.cpp
2

3 #include "MyFilter.hpp"
4

5 #include <pdal/pdal_internal.hpp>
6

7 namespace pdal
8 {
9

10 static PluginInfo const s_info
11 {
12 "filters.name",
13 "My awesome filter",
14 "http://link/to/documentation"
15 };
16

17 CREATE_SHARED_STAGE(MyFilter, s_info)
18

19 std::string MyFilter::getName() const { return s_info.name; }
20

21 void MyFilter::addArgs(ProgramArgs& args)
(continues on next page)

560 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
22 {
23 args.add("param", "Some parameter", m_value, 1.0);
24 }
25

26 void MyFilter::addDimensions(PointLayoutPtr layout)
27 {
28 layout->registerDim(Dimension::Id::Intensity);
29 m_myDimension = layout->registerOrAssignDim("MyDimension",
30 Dimension::Type::Unsigned8);
31 }
32

33 PointViewSet MyFilter::run(PointViewPtr input)
34 {
35 PointViewSet viewSet;
36 viewSet.insert(input);
37 return viewSet;
38 }
39

40 } // namespace pdal

For your filter to be available to PDAL at runtime, it must adhere to the PDAL plugin interface.
As a convenience, we provide macros to do just this.

We begin by creating a PluginInfo struct containing three identifying elements - the filter
name, description, and a link to documentation.

1 static PluginInfo const s_info
2 {
3 "filters.name",
4 "My awesome filter",
5 "http://link/to/documentation"
6 };

PDAL requires that filter names always begin with filters., and end with a string that
uniquely identifies the filter. The description will be displayed to users of the PDAL CLI (pdal
--drivers). When making a shared plugin, the name of the shared library must correspond
with the name of the filter provided here. The name of the generated shared object must be

libpdal_plugin_filter_<filter name>.<shared library extension>

Next, we pass the following to the CREATE_SHARED_STAGE macro, passing in the name of the
stage and the PluginInfo struct.

14.1. Development 561

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

CREATE_SHARED_STAGE(MyFilter, s_info)

To create a static stage, we simply change CREATE_SHARED_STAGE to CREATE_STATC_STAGE.

Finally, we implement a method to get the plugin name, which is primarily used by the PDAL
CLI when using the --drivers or --options arguments.

1 std::string MyFilter::getName() const { return s_info.name; }

Now that the filter has implemented the proper plugin interface, we will begin to implement
some methods that actually implement the filter. The addArgs() method is used to register
and bind any provided options to the stage. Here, we get the value of param, if provided, else
we populate m_value with the default value of 1.0. Option names, descriptions, and default
values specified in addArgs() will be displayed via the PDAL CLI with the --options
argument.

1 void MyFilter::addArgs(ProgramArgs& args)
2 {
3 args.add("param", "Some parameter", m_value, 1.0);
4 }

In addDimensions() we make sure that the known Intensity dimension is registered. We
can also add a custom dimension, MyDimension, which will be populated within run().

1 void MyFilter::addDimensions(PointLayoutPtr layout)
2 {
3 layout->registerDim(Dimension::Id::Intensity);
4 m_myDimension = layout->registerOrAssignDim("MyDimension",
5 Dimension::Type::Unsigned8);
6 }

Finally, we define run(), which takes as input a PointViewPtr and returns a PointViewSet.
It is here that we can transform existing dimensions, add data to new dimensions, or selectively
add/remove individual points.

We suggest you take a closer look at our existing filters to get an idea of the power of the
Filter stage and inspiration for your own filters!

562 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Compilation

Set up a CMakeLists.txt file to compile your filter against PDAL:

1 cmake_minimum_required(VERSION 3.13)
2 project(FilterTutorial)
3

4 find_package(PDAL 2.5 REQUIRED CONFIG)
5

6 set(CMAKE_CXX_STANDARD 17)
7 set(CMAKE_CXX_STANDARD_REQUIRED ON)
8 add_library(pdal_plugin_filter_myfilter SHARED MyFilter.cpp)
9 target_link_libraries(pdal_plugin_filter_myfilter PRIVATE ${PDAL_

→˓LIBRARIES})
10 target_include_directories(pdal_plugin_filter_myfilter PRIVATE ${PDAL_

→˓INCLUDE_DIRS})
11 target_link_directories(pdal_plugin_filter_myfilter PRIVATE ${PDAL_

→˓LIBRARY_DIRS})

Note: CMakeLists.txt contents may vary slightly depending on your project requirements,
operating system, and compilter.

Stand-alone program

An example of a standalone program that will read a point cloud from disk, apply a filter, and
write it back to disk to a new file is given in examples/filter-streamer. This will also
show how to adjust the offset and scale of points in a way that is consistent with the filtering
method.

14.1.8 Writing a kernel

Author
Bradley Chambers

Contact
brad.chambers@gmail.com

Date
11/02/2017

PDAL’s command-line application can be extended through the development of kernel
functions. In this tutorial, we will give a brief example.

14.1. Development 563

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

The header

First, we provide a full listing of the kernel header.

1 // MyKernel.hpp
2

3 #pragma once
4

5 #include <pdal/Kernel.hpp>
6

7 #include <string>
8

9 namespace pdal
10 {
11

12 class PDAL_DLL MyKernel : public Kernel
13 {
14 public:
15 MyKernel();
16

17 std::string getName() const;
18 int execute(); // override
19

20 private:
21 void addSwitches(ProgramArgs& args);
22

23 std::string m_input_file;
24 std::string m_output_file;
25 };
26

27 } // namespace pdal

As with other plugins, the MyKernel class needs to return a name.

std::string getName() const;

The source

Again, we start with a full listing of the kernel source.

1 // MyKernel.cpp
2

3 #include "MyKernel.hpp"
(continues on next page)

564 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
4

5 #include <pdal/Filter.hpp>
6 #include <pdal/Kernel.hpp>
7 #include <pdal/Options.hpp>
8 #include <pdal/PointTable.hpp>
9

10 #include <memory>
11 #include <string>
12

13

14 namespace pdal {
15

16 static PluginInfo const s_info
17 {
18 "kernels.mykernel",
19 "MyKernel",
20 "http://link/to/documentation"
21 };
22

23 CREATE_SHARED_KERNEL(MyKernel, s_info);
24 std::string MyKernel::getName() const { return s_info.name; }
25

26 MyKernel::MyKernel() : Kernel()
27 {}
28

29 void MyKernel::addSwitches(ProgramArgs& args)
30 {
31 args.add("input,i", "Input filename", m_input_file).

→˓setPositional();
32 args.add("output,o", "Output filename", m_output_file).

→˓setPositional();
33 }
34

35 int MyKernel::execute()
36 {
37 PointTable table;
38

39 Stage& reader = makeReader(m_input_file, "readers.las");
40

41 // Options should be added in the call to makeFilter, makeReader,
42 // or makeWriter so that the system can override them with those
43 // provided on the command line when applicable.
44 Options filterOptions;

(continues on next page)

14.1. Development 565

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
45 filterOptions.add("step", 10);
46 Stage& filter = makeFilter("filters.decimation", reader,␣

→˓filterOptions);
47

48 Stage& writer = makeWriter(m_output_file, filter, "writers.text");
49 writer.prepare(table);
50 writer.execute(table);
51

52 return 0;
53 }
54

55 } // namespace pdal

In your kernel implementation, you will use a macro defined in pdal_macros. This macro
registers the plugin with the PluginManager.

CREATE_SHARED_KERNEL(MyKernel, s_info);

To build up a processing pipeline in this example, we need to create two objects: the
pdal::PointTable.

int MyKernel::execute()
{

PointTable table;

Stage& reader = makeReader(m_input_file, "readers.las");

// Options should be added in the call to makeFilter, makeReader,
// or makeWriter so that the system can override them with those
// provided on the command line when applicable.
Options filterOptions;
filterOptions.add("step", 10);
Stage& filter = makeFilter("filters.decimation", reader,␣

→˓filterOptions);

Stage& writer = makeWriter(m_output_file, filter, "writers.text");
writer.prepare(table);
writer.execute(table);

return 0;
}

To implement the actual kernel logic we implement execute(). In this case, the kernel reads a
las file, decimates the data (eliminates some points) and writes the result to a text file. The base

566 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

kernel class provides functions (makeReader, makeFilter, makeWriter) to create stages with
options as desired. The pipeline that has been created can be run by preparing and executing
the last stage in the pipeline.

When compiled, a dynamic library file will be created; in this case,
libpdal_plugin_kernel_mykernel.dylib

Put this file in whatever directory PDAL_DRIVER_PATH is pointing to. Then, if you run pdal
--drivers, you should see mykernel listed in the possible commands.

To run this kernel, you would use pdal mykernel -i <input las file> -o <output
text file>.

Compilation

Set up a CMakeLists.txt file to compile your kernel against PDAL:

1 cmake_minimum_required(VERSION 3.13)
2 project(KernelTutorial)
3

4 find_package(PDAL 2.5 REQUIRED CONFIG)
5

6 set(CMAKE_CXX_STANDARD 17)
7 set(CMAKE_CXX_STANDARD_REQUIRED ON)
8

9 add_library(pdal_plugin_kernel_mykernel SHARED MyKernel.cpp)
10 target_link_libraries(pdal_plugin_kernel_mykernel PRIVATE ${PDAL_

→˓LIBRARIES})
11 target_include_directories(pdal_plugin_kernel_mykernel PRIVATE
12 ${PDAL_INCLUDE_DIRS})
13 target_link_directories(pdal_plugin_kernel_mykernel PRIVATE ${PDAL_

→˓LIBRARY_DIRS})

14.1.9 Writing a reader

Authors
Bradley Chambers, Scott Lewis

Contact
brad.chambers@gmail.com

Date
11/02/2017

14.1. Development 567

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

PDAL’s command-line application can be extended through the development of reader
functions. In this tutorial, we will give a brief example.

The header

First, we provide a full listing of the reader header.

1 // MyReader.hpp
2

3 #pragma once
4

5 #include <pdal/PointView.hpp>
6 #include <pdal/Reader.hpp>
7 #include <pdal/util/IStream.hpp>
8

9 namespace pdal
10 {
11 class MyReader : public Reader
12 {
13 public:
14 MyReader() : Reader() {};
15 std::string getName() const;
16

17 private:
18 std::unique_ptr<ILeStream> m_stream;
19 point_count_t m_index;
20 double m_scale_z;
21

22 virtual void addDimensions(PointLayoutPtr layout);
23 virtual void addArgs(ProgramArgs& args);
24 virtual void ready(PointTableRef table);
25 virtual point_count_t read(PointViewPtr view, point_count_t count);
26 virtual void done(PointTableRef table);
27 };
28 }

1 std::unique_ptr<ILeStream> m_stream;
2 point_count_t m_index;
3 double m_scale_z;

m_stream is used to process the input, while m_index is used to track the index of the records.
m_scale_z is specific to MyReader, and will be described later.

568 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1 virtual void addDimensions(PointLayoutPtr layout);
2 virtual void addArgs(ProgramArgs& args);
3 virtual void ready(PointTableRef table);
4 virtual point_count_t read(PointViewPtr view, point_count_t count);
5 virtual void done(PointTableRef table);

Various other override methods for the stage. There are a few others that could be overridden,
which will not be discussed in this tutorial.

Note: See ./include/pdal/Reader.hpp of the source tree for more methods that a reader
can override or implement.

The source

Again, we start with a full listing of the reader source.

1 // MyReader.cpp
2

3 #include "MyReader.hpp"
4 #include <pdal/util/ProgramArgs.hpp>
5

6 namespace pdal
7 {
8 static PluginInfo const s_info
9 {

10 "readers.myreader",
11 "My Awesome Reader",
12 "http://link/to/documentation"
13 };
14

15 CREATE_SHARED_STAGE(MyReader, s_info)
16

17 std::string MyReader::getName() const { return s_info.name; }
18

19 void MyReader::addArgs(ProgramArgs& args)
20 {
21 args.add("z_scale", "Z Scaling", m_scale_z, 1.0);
22 }
23

24 void MyReader::addDimensions(PointLayoutPtr layout)
25 {

(continues on next page)

14.1. Development 569

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
26 layout->registerDim(Dimension::Id::X);
27 layout->registerDim(Dimension::Id::Y);
28 layout->registerDim(Dimension::Id::Z);
29 layout->registerOrAssignDim("MyData", Dimension::Type::Unsigned64);
30 }
31

32 void MyReader::ready(PointTableRef)
33 {
34 m_index = 0;
35 SpatialReference ref("EPSG:4385");
36 setSpatialReference(ref);
37 }
38

39 template <typename T>
40 T convert(const StringList& s, const std::string& name, size_t␣

→˓fieldno)
41 {
42 T output;
43 bool bConverted = Utils::fromString(s[fieldno], output);
44 if (!bConverted)
45 {
46 std::stringstream oss;
47 oss << "Unable to convert " << name << ", " << s[fieldno] <<
48 ", to double";
49 throw pdal_error(oss.str());
50 }
51

52 return output;
53 }
54

55

56 point_count_t MyReader::read(PointViewPtr view, point_count_t count)
57 {
58 PointLayoutPtr layout = view->layout();
59 PointId nextId = view->size();
60 PointId idx = m_index;
61 point_count_t numRead = 0;
62

63 m_stream.reset(new ILeStream(m_filename));
64

65 size_t HEADERSIZE(1);
66 size_t skip_lines((std::max)(HEADERSIZE, (size_t)m_index));
67 size_t line_no(1);

(continues on next page)

570 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
68 for (std::string line; std::getline(*m_stream->stream(), line);␣

→˓line_no++)
69 {
70 if (line_no <= skip_lines)
71 {
72 continue;
73 }
74

75 // MyReader format: X::Y::Z::Data
76 StringList s = Utils::split2(line, ':');
77

78 unsigned long u64(0);
79 if (s.size() != 4)
80 {
81 std::stringstream oss;
82 oss << "Unable to split proper number of fields. Expected 4,␣

→˓got "
83 << s.size();
84 throw pdal_error(oss.str());
85 }
86

87 std::string name("X");
88 view->setField(Dimension::Id::X, nextId, convert<double>(s, name,␣

→˓0));
89

90 name = "Y";
91 view->setField(Dimension::Id::Y, nextId, convert<double>(s, name,␣

→˓1));
92

93 name = "Z";
94 double z = convert<double>(s, name, 2) * m_scale_z;
95 view->setField(Dimension::Id::Z, nextId, z);
96

97 name = "MyData";
98 view->setField(layout->findProprietaryDim(name),
99 nextId,

100 convert<unsigned int>(s, name, 3));
101

102 nextId++;
103 if (m_cb)
104 m_cb(*view, nextId);
105 }
106 m_index = nextId;

(continues on next page)

14.1. Development 571

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
107 numRead = nextId;
108

109 return numRead;
110 }
111

112 void MyReader::done(PointTableRef)
113 {
114 m_stream.reset();
115 }
116

117 } //namespace pdal

In your reader implementation, you will use a macro to create the plugin. This macro registers
the plugin with the PDAL PluginManager. In this case, we are declaring this as a SHARED
stage, meaning that it will be loaded at runtime instead of being linked to the main PDAL
installation. The macro is supplied with the class name of the plugin and a PluginInfo object.
The PluginInfo objection includes the name of the plugin, a description, and a link to
documentation.

When making a shared plugin, the name of the shared library must correspond with the name
of the reader provided here. The name of the generated shared object must be

libpdal_plugin_reader_<reader name>.<shared library extension>

1 static PluginInfo const s_info
2 {
3 "readers.myreader",
4 "My Awesome Reader",
5 "http://link/to/documentation"
6 };
7

8 CREATE_SHARED_STAGE(MyReader, s_info)

This method will process a options for the reader. In this example, we are setting the z_scale
value to a default of 1.0, indicating that the Z values we read should remain as-is. (In our
reader, this could be changed if, for example, the Z values in the file represented mm values,
and we want to represent them as m in the storage model). addArgs will bind values given for
the argument to the m_scale_z variable of the stage.

1 void MyReader::addArgs(ProgramArgs& args)
2 {
3 args.add("z_scale", "Z Scaling", m_scale_z, 1.0);
4 }

572 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

This method registers the various dimensions the reader will use. In our case, we are using the
X, Y, and Z built-in dimensions, as well as a custom dimension MyData.

1 void MyReader::addDimensions(PointLayoutPtr layout)
2 {
3 layout->registerDim(Dimension::Id::X);
4 layout->registerDim(Dimension::Id::Y);
5 layout->registerDim(Dimension::Id::Z);
6 layout->registerOrAssignDim("MyData", Dimension::Type::Unsigned64);
7 }

This method is called when the Reader is ready for use. It will only be called once, regardless
of the number of PointViews that are to be processed.

1 void MyReader::ready(PointTableRef)
2 {
3 m_index = 0;
4 SpatialReference ref("EPSG:4385");
5 setSpatialReference(ref);

This is a helper function, which will convert a string value into the type specified when it’s
called. In our example, it will be used to convert strings to doubles when reading from the
input stream.

1 template <typename T>
2 T convert(const StringList& s, const std::string& name, size_t␣

→˓fieldno)
3 {
4 T output;
5 bool bConverted = Utils::fromString(s[fieldno], output);
6 if (!bConverted)
7 {
8 std::stringstream oss;
9 oss << "Unable to convert " << name << ", " << s[fieldno] <<

10 ", to double";
11 throw pdal_error(oss.str());
12 }
13

14 return output;

This method is the main processing method for the reader. It takes a pointer to a PointView
which we will build as we read from the file. We initialize some variables as well, and then
reset the input stream with the filename used for the reader. Note that in other readers, the
contents of this method could be very different depending on the format of the file being read,
but this should serve as a good start for how to build the PointView object.

14.1. Development 573

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

1 {
2 PointLayoutPtr layout = view->layout();
3 PointId nextId = view->size();
4 PointId idx = m_index;
5 point_count_t numRead = 0;

In preparation for reading the file, we prepare to skip some header lines. In our case, the header
is only a single line.

1 size_t HEADERSIZE(1);
2 size_t skip_lines((std::max)(HEADERSIZE, (size_t)m_index));

Here we begin our main loop. In our example file, the first line is a header, and each line
thereafter is a single point. If the file had a different format the method of looping and reading
would have to change as appropriate. We make sure we are skipping the header lines here
before moving on.

1 size_t line_no(1);
2 for (std::string line; std::getline(*m_stream->stream(), line);␣

→˓line_no++)
3 {
4 if (line_no <= skip_lines)
5 {
6 continue;

Here we take the line we read in the for block header, split it, and make sure that we have the
proper number of fields.

1 // MyReader format: X::Y::Z::Data
2 StringList s = Utils::split2(line, ':');
3

4 unsigned long u64(0);
5 if (s.size() != 4)
6 {
7 std::stringstream oss;
8 oss << "Unable to split proper number of fields. Expected 4,␣

→˓got "
9 << s.size();

10 throw pdal_error(oss.str());

Here we take the values we read and put them into the PointView object. The X and Y fields
are simply converted from the file and put into the respective fields. MyData is done likewise
with the custom dimension we defined. The Z value is read, and multiplied by the scale_z
option (defaulted to 1.0), before the converted value is put into the field.

574 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

When putting the value into the PointView object, we pass in the Dimension that we are
assigning it to, the ID of the point (which is incremented in each iteration of the loop), and the
dimension value.

1 std::string name("X");
2 view->setField(Dimension::Id::X, nextId, convert<double>(s, name,␣

→˓0));
3

4 name = "Y";
5 view->setField(Dimension::Id::Y, nextId, convert<double>(s, name,␣

→˓1));
6

7 name = "Z";
8 double z = convert<double>(s, name, 2) * m_scale_z;
9 view->setField(Dimension::Id::Z, nextId, z);

10

11 name = "MyData";
12 view->setField(layout->findProprietaryDim(name),
13 nextId,

Finally, we increment the nextId and make a call into the progress callback if we have one with
our nextId. After the loop is done, we set the index and number read, and return that value as
the number of points read. This could differ in cases where we read multiple streams, but that
won’t be covered here.

1 nextId++;
2 if (m_cb)
3 m_cb(*view, nextId);
4 }
5 m_index = nextId;
6 numRead = nextId;

When the read method is finished, the done method is called for any cleanup. In this case, we
simply make sure the stream is reset.

1 void MyReader::done(PointTableRef)
2 {
3 m_stream.reset();

14.1. Development 575

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Compiling and Usage

The MyReader.cpp code can be compiled. For this example, we’ll use cmake. Here is the
CMakeLists.txt file we will use:

1 cmake_minimum_required(VERSION 3.13)
2 project(ReaderTutorial)
3

4 find_package(PDAL 2.5 REQUIRED CONFIG)
5

6 set(CMAKE_CXX_STANDARD 17)
7 set(CMAKE_CXX_STANDARD_REQUIRED ON)
8

9 add_library(pdal_plugin_reader_myreader SHARED MyReader.cpp)
10 target_link_libraries(pdal_plugin_reader_myreader PRIVATE ${PDAL_

→˓LIBRARIES})
11 target_include_directories(pdal_plugin_reader_myreader PRIVATE
12 ${PDAL_INCLUDE_DIRS})
13 target_link_directories(pdal_plugin_reader_myreader PRIVATE ${PDAL_

→˓LIBRARY_DIRS})

If this file is in the directory containing MyReader.hpp and MyReader.cpp, simply run cmake
., followed by make. This will generate a file called
libpdal_plugin_reader_myreader.dylib.

Put this dylib file into the directory pointed to by PDAL_DRIVER_PATH, and then when you run
pdal --drivers, you should see an entry for readers.myreader.

To test the reader, we will put it into a pipeline and output a text file.

Please download the pipeline-myreader.json
(https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/pipeline-
myreader.json?raw=true) and test-reader-input.txt
(https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/test-reader-
input.txt?raw=true) files.

In the directory with those two files, run pdal pipeline pipeline-myreader.json. You
should have an output file called output.txt, which will have the same data as in the input
file, except in a CSV style format, and with the Z values scaled by .001.

576 Chapter 14. Development

https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/pipeline-myreader.json?raw=true
https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/test-reader-input.txt?raw=true

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Streaming Reader

Streaming points from a cloud can be accomplished via creating a custom writer class that will
query the file reader. An example of this, which also shows all the member functions that are
needed for a writer, is in examples/reading-streamer.

Fine-grained Streaming Control

Normally PDAL expects that the points will be streamed from a file without any interruption,
and be consumed as they arrive. An example showing how to pause/resume streaming points is
in examples/batch-streamer.

This example also shows how to use a callback, rather than creating a full writer class. All the
variables that must be shared are global.

14.1.10 Writing a writer

Authors
Bradley Chambers, Scott Lewis

Contact
brad.chambers@gmail.com

Date
10/26/2016

PDAL’s command-line application can be extended through the development of writer
functions. In this tutorial, we will give a brief example.

The header

First, we provide a full listing of the writer header.

1 // MyWriter.hpp
2

3 #pragma once
4

5 #include <pdal/Writer.hpp>
6

7 #include <string>
8

9 namespace pdal{
10

11 typedef std::shared_ptr<std::ostream> FileStreamPtr;
(continues on next page)

14.1. Development 577

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
12

13 class MyWriter : public Writer
14 {
15 public:
16 MyWriter()
17 {}
18

19 std::string getName() const;
20

21 private:
22 virtual void addArgs(ProgramArgs& args);
23 virtual void initialize();
24 virtual void ready(PointTableRef table);
25 virtual void write(const PointViewPtr view);
26 virtual void done(PointTableRef table);
27

28 std::string m_filename;
29 std::string m_newline;
30 std::string m_datafield;
31 int m_precision;
32

33 FileStreamPtr m_stream;
34 Dimension::Id m_dataDim;
35 };
36

37 } // namespace pdal

In your MyWriter class, you will declare the necessary methods and variables needed to make
the writer work and meet the plugin specifications.

1 typedef std::shared_ptr<std::ostream> FileStreamPtr;

FileStreamPtr is defined to make the declaration of the stream easier to manage later on.

std::string getName() const;

Every stage must return a unique name.

virtual void addArgs(ProgramArgs& args);
virtual void initialize();
virtual void ready(PointTableRef table);
virtual void write(const PointViewPtr view);
virtual void done(PointTableRef table);

578 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

These methods are used during various phases of the pipeline. There are also more methods,
which will not be covered in this tutorial.

std::string m_filename;
std::string m_newline;
std::string m_datafield;
int m_precision;

FileStreamPtr m_stream;
Dimension::Id m_dataDim;

These are variables our Writer will use, such as the file to write to, the newline character to use,
the name of the data field to use to write the MyData field, precision of the double outputs, the
output stream, and the dimension that corresponds to the data field for easier lookup.

As mentioned, there cen be additional configurations done as needed.

The source

We will start with a full listing of the writer source.

1 // MyWriter.cpp
2

3 #include "MyWriter.hpp"
4 #include <pdal/util/FileUtils.hpp>
5 #include <pdal/util/ProgramArgs.hpp>
6

7 namespace pdal
8 {
9 static PluginInfo const s_info

10 {
11 "writers.mywriter",
12 "My Awesome Writer",
13 "http://path/to/documentation"
14 };
15

16 CREATE_SHARED_STAGE(MyWriter, s_info);
17

18 std::string MyWriter::getName() const { return s_info.name; }
19

20 struct FileStreamDeleter
21 {
22 template <typename T>
23 void operator()(T* ptr)

(continues on next page)

14.1. Development 579

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
24 {
25 if (ptr)
26 {
27 ptr->flush();
28 FileUtils::closeFile(ptr);
29 }
30 }
31 };
32

33 void MyWriter::addArgs(ProgramArgs& args)
34 {
35 // setPositional() Makes the argument required.
36 args.add("filename", "Output filename", m_filename).setPositional();
37 args.add("newline", "Line terminator", m_newline, "\n");
38 args.add("datafield", "Data field", m_datafield, "UserData");
39 args.add("precision", "Precision", m_precision, 3);
40 }
41

42 void MyWriter::initialize()
43 {
44 m_stream = FileStreamPtr(FileUtils::createFile(m_filename, true),
45 FileStreamDeleter());
46 if (!m_stream)
47 {
48 std::stringstream out;
49 out << "writers.mywriter couldn't open '" << m_filename <<
50 "' for output.";
51 throw pdal_error(out.str());
52 }
53 }
54

55

56 void MyWriter::ready(PointTableRef table)
57 {
58 m_stream->precision(m_precision);
59 *m_stream << std::fixed;
60

61 Dimension::Id d = table.layout()->findDim(m_datafield);
62 if (d == Dimension::Id::Unknown)
63 {
64 std::ostringstream oss;
65 oss << "Dimension not found with name '" << m_datafield << "'";
66 throw pdal_error(oss.str());

(continues on next page)

580 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
67 }
68

69 m_dataDim = d;
70

71 *m_stream << "#X:Y:Z:MyData" << m_newline;
72 }
73

74

75 void MyWriter::write(PointViewPtr view)
76 {
77 for (PointId idx = 0; idx < view->size(); ++idx)
78 {
79 double x = view->getFieldAs<double>(Dimension::Id::X, idx);
80 double y = view->getFieldAs<double>(Dimension::Id::Y, idx);
81 double z = view->getFieldAs<double>(Dimension::Id::Z, idx);
82 unsigned int myData = 0;
83

84 if (!m_datafield.empty()) {
85 myData = (int)(view->getFieldAs<double>(m_dataDim, idx) + 0.

→˓5);
86 }
87

88 *m_stream << x << ":" << y << ":" << z << ":"
89 << myData << m_newline;
90 }
91 }
92

93

94 void MyWriter::done(PointTableRef)
95 {
96 m_stream.reset();
97 }
98 }

In the writer implementation, we will use a macro defined in pdal_macros, which is included in
the include chain we are using.

static PluginInfo const s_info
{

"writers.mywriter",
"My Awesome Writer",
"http://path/to/documentation"

};
(continues on next page)

14.1. Development 581

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)

CREATE_SHARED_STAGE(MyWriter, s_info);

Here we define a struct with information regarding the writer, such as the name, a description,
and a path to documentation. We then use the macro to create a SHARED stage, which means
it will be external to the main PDAL installation. When using the macro, we specify the name
of the Stage and the PluginInfo struct we defined earlier.

When making a shared plugin, the name of the shared library must correspond with the name
of the writer provided here. The name of the generated shared object must be

libpdal_plugin_writer_<writer name>.<shared library extension>

1 struct FileStreamDeleter
2 {
3 template <typename T>
4 void operator()(T* ptr)
5 {
6 if (ptr)
7 {
8 ptr->flush();
9 FileUtils::closeFile(ptr);

10 }
11 }
12 };

This struct is used for helping with the FileStreamPtr for cleanup.

1 void MyWriter::addArgs(ProgramArgs& args)
2 {
3 // setPositional() Makes the argument required.
4 args.add("filename", "Output filename", m_filename).setPositional();
5 args.add("newline", "Line terminator", m_newline, "\n");
6 args.add("datafield", "Data field", m_datafield, "UserData");
7 args.add("precision", "Precision", m_precision, 3);
8 }

This method defines the arguments the writer provides and binds them to private variables.

void MyWriter::initialize()
{

m_stream = FileStreamPtr(FileUtils::createFile(m_filename, true),
FileStreamDeleter());

if (!m_stream)
(continues on next page)

582 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
{

std::stringstream out;
out << "writers.mywriter couldn't open '" << m_filename <<

"' for output.";
throw pdal_error(out.str());

}
}

This method initializes our file stream in preparation for writing.

1 void MyWriter::ready(PointTableRef table)
2 {
3 m_stream->precision(m_precision);
4 *m_stream << std::fixed;
5

6 Dimension::Id d = table.layout()->findDim(m_datafield);
7 if (d == Dimension::Id::Unknown)
8 {
9 std::ostringstream oss;

10 oss << "Dimension not found with name '" << m_datafield << "'";
11 throw pdal_error(oss.str());
12 }
13

14 m_dataDim = d;
15

16 *m_stream << "#X:Y:Z:MyData" << m_newline;
17 }

The ready method is used to prepare the writer for any number of PointViews that may be
passed in. In this case, we are setting the precision for our double writes, looking up the
dimension specified as the one to write into MyData, and writing the header of the output file.

1 void MyWriter::write(PointViewPtr view)
2 {
3 for (PointId idx = 0; idx < view->size(); ++idx)
4 {
5 double x = view->getFieldAs<double>(Dimension::Id::X, idx);
6 double y = view->getFieldAs<double>(Dimension::Id::Y, idx);
7 double z = view->getFieldAs<double>(Dimension::Id::Z, idx);
8 unsigned int myData = 0;
9

10 if (!m_datafield.empty()) {
11 myData = (int)(view->getFieldAs<double>(m_dataDim, idx) + 0.

(continues on next page)

14.1. Development 583

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓5);

12 }
13

14 *m_stream << x << ":" << y << ":" << z << ":"
15 << myData << m_newline;
16 }
17 }

This method is the main method for writing. In our case, we are writing a very simple file, with
data in the format of X:Y:Z:MyData. We loop through each index in the PointView, and for
each one we take the X, Y, and Z values, as well as the value for the specified MyData
dimension, and write this to the output file. In particular, note the reading of MyData; in our
case, MyData is an integer, but the field we are reading might be a double. Converting from
double to integer is done via truncation, not rounding, so by adding .5 before making the
conversion will ensure rounding is done properly.

Note that in this case, the output format is pretty simple. For more complex outputs, you may
need to generate helper methods (and possibly helper classes) to help generate the proper
output. The key is reading in the appropriate values from the PointView, and then writing those
in whatever necessary format to the output stream.

1 void MyWriter::done(PointTableRef)
2 {
3 m_stream.reset();
4 }

This method is called when the writing is done. In this case, it simply cleans up the output
stream by resetting it.

Compiling and Usage

To compile this reader, we will use cmake. Here is the CMakeLists.txt file we will use for this
process:

1 cmake_minimum_required(VERSION 3.13)
2 project(WriterTutorial)
3

4 find_package(PDAL 2.5 REQUIRED CONFIG)
5

6 set(CMAKE_CXX_STANDARD 17)
7 set(CMAKE_CXX_STANDARD_REQUIRED ON)
8

9 add_library(pdal_plugin_writer_mywriter SHARED MyWriter.cpp)
(continues on next page)

584 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
10 target_link_libraries(pdal_plugin_writer_mywriter PRIVATE ${PDAL_

→˓LIBRARIES})
11

12 target_link_directories(pdal_plugin_writer_mywriter PRIVATE ${PDAL_
→˓LIBRARY_DIRS})

13 target_include_directories(pdal_plugin_writer_mywriter PRIVATE
14 ${PDAL_INCLUDE_DIRS})

If this file is in the directory with the MyWriter.hpp and MyWriter.cpp files, simply run cmake
. followed by make. This will generate a file called
libpdal_plugin_writer_mywriter.dylib.

Put this dylib file into the directory pointed to by PDAL_DRIVER_PATH, and then when you run
pdal --drivers, you will see an entry for writers.mywriter.

To test the writer, we will put it into a pipeline and read in a LAS file and covert it to our output
format. For this example, use interesting.las
(https://github.com/PDAL/PDAL/blob/master/test/data/interesting.las?raw=true), and run it
through pipeline-mywriter.json
(https://github.com/PDAL/PDAL/blob/master/examples/writing-writer/pipeline-
mywriter.json?raw=true).

If those files are in the same directory, you would just run the command pdal pipeline
pipeline-mywriter.json, and it will generate an output file called output.txt, which will be
in the proper format. From there, if you wanted, you could run that output file through the
MyReader that was created in the previous tutorial, as well.

14.1.11 CMake

Author
Bradley Chambers

Contact
brad.chambers@gmail.com

Date
01/21/2015

This tutorial will explain how to use PDAL in your own projects using CMake. A more
complete, working example can be found here (page 552).

Note: We assume you have either built or installed (page 540) PDAL.

14.1. Development 585

https://github.com/PDAL/PDAL/blob/master/test/data/interesting.las?raw=true
https://github.com/PDAL/PDAL/blob/master/examples/writing-writer/pipeline-mywriter.json?raw=true
mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Basic CMake configuration

Begin by creating a file named CMakeLists.txt that contains:

cmake_minimum_required(VERSION 2.8)
project(MY_PDAL_PROJECT)
find_package(PDAL 1.0.0 REQUIRED CONFIG)
include_directories(${PDAL_INCLUDE_DIRS})
link_directories(${PDAL_LIBRARY_DIRS})
add_definitions(${PDAL_DEFINITIONS})
set(CMAKE_CXX_FLAGS "-std=c++11")
add_executable(tutorial tutorial.cpp)
target_link_libraries(tutorial PRIVATE ${PDAL_LIBRARIES})

CMakeLists explained

cmake_minimum_required(VERSION 2.8.12)

The cmake_minimum_required command specifies the minimum required version of CMake.
We use some recent additions to CMake in PDAL that require version 2.8.12.

project(MY_PDAL_PROJECT)

The CMake project command names your project and sets a number of useful CMake variables.

find_package(PDAL 1.0.0 REQUIRED CONFIG)

We next ask CMake to locate the PDAL package, requiring version 1.0.0 or higher.

include_directories(${PDAL_INCLUDE_DIRS})
link_directories(${PDAL_LIBRARY_DIRS})
add_definitions(${PDAL_DEFINITIONS})

If PDAL is found, the following variables will be set:

• PDAL_FOUND: set to 1 if PDAL is found, otherwise unset

• PDAL_INCLUDE_DIRS: set to the paths to PDAL installed headers and the dependency
headers

• PDAL_LIBRARIES: set to the file names of the built and installed PDAL libraries

• PDAL_LIBRARY_DIRS: set to the paths where PDAL libraries and 3rd party
dependencies reside

• PDAL_VERSION : the detected version of PDAL

586 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• PDAL_DEFINITIONS: list the needed preprocessor definitions and compiler flags

set(CMAKE_CXX_FLAGS "-std=c++11")

We haven’t quite implemented the setting of PDAL_DEFINITIONS within the
PDALConfig.cmake file, so for now you should specify the c++11 compiler flag, as we use it
extensively throughout PDAL.

add_executable(tutorial tutorial.cpp)

We use the add_executable command to tell CMake to create an executable named tutorial
from the source file tutorial.cpp.

target_link_libraries(tutorial PRIVATE ${PDAL_LIBRARIES})

We assume that the tutorial executable makes calls to PDAL functions. To make the linker
aware of the PDAL libraries, we use target_link_libraries to link tutorial against the
PDAL_LIBRARIES.

Compiling the project

Make a build directory, where compilation will occur:

$ cd /PATH/TO/MY/PDAL/PROJECT
$ mkdir build

Run cmake from within the build directory:

$ cd build
$ cmake ..

Now, build the project:

$ make

The project is now built and ready to run:

$./tutorial

14.1. Development 587

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.2 Project

Project resources, such as how to update the docs, where the test frameworks are, who develops
the software, and conventions to use when developing new code can be found in this section.

14.2.1 Coding Conventions

To the extent possible and reasonable, we value consistency of source code formatting, class
and variable naming, and so forth. Please follow existing code, rather than introducing your
own (of course, better) formatting or change existing code unless you’re changing behavior.

This note lists some such conventions that we would like to follow, where it makes sense to do
so.

Source Formatting

We use astyle (http://astyle.sourceforge.net) as a tool to reformat C++ source code files in a
consistent fashion. The file astylerc, at the top of the github repo, contains the default settings
we use.

Our conventions are:

• Lines should be kept to 80 characters where reasonable.

• LF endings (unix style), not CRLF (windows style)

• spaces, not tabs

• indent to four (4) spaces (“Four shalt be the number thou shalt count, and the number of
the counting shall be four. Three shalt thou not count, neither count thou five. . . ”)

• braces shall be on their own lines, like this:

if (p)
{

foo();
}

• copyright header, license, and author(s) on every file

• two spaces between major units, e.g. function bodies

588 Chapter 14. Development

http://astyle.sourceforge.net

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Naming Conventions

• classes should be names using UpperCamelCase

• functions should be in lowerCamelCase

• member variables should be prefixed with “m_”, followed by the name in
lowerCamelCase – for example, “m_numberOfPoints”

• there should be one class per file, and the name of the file should match the class name –
that is, class PointData should live in files PointData.hpp and PointData.cpp.

Other Conventions

• Surround all code with “namespace pdal {. . . }”; where justifiable, you may introduce a
nested namespace.

• All exceptions that are not caught internally should be of type pdal_error. Exceptions
used as local error handling should always be caught.

• Don’t put member function bodies in the class declaration in the header file, unless
clearly justified for performance reasons. Use the “inline” keyword in these cases(?).

• Use const.

• Don’t put “using” declarations in headers.

• Document all public (and protected) member functions using doxygen markup.

#include Conventions

• For public headers from the ./include/pdal directory, use angle brackets: #include
<pdal/Stage.h>

• For private headers (from somewhere in ./src), use quotes: #include “Support.hpp”

• Don’t #include a file where a simple forward declaration will do. (Note: this only applies
to pdal files; don’t forward declare from system or 3rd party headers.)

• Don’t include a file unless it actually is required to compile the source unit.

• Don’t use manual include guards. All reasonable compilers support the once pragma:

#pragma once

14.2. Project 589

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.2.2 Contributors

Numerous organizations, companies, and individuals have contributed time, money, and code
to build PDAL up into a highly capable software package. Without these contributions, PDAL
would not progress as quickly, and its quality wouldn’t be as high. The development team is
proud of the software, and it collectively represents years of experiences doing point cloud data
management. We hope you’ll find it useful too.

This page is to recognize these contributors and their contributions. Thanks.

Engineering Contributors

(http://hobu.co) Hobu (http://hobu.co) is
the primary company behind the design, testing, development, and distribution of PDAL. Two
Hobu team members primarily interact with PDAL. Howard Butler (https://github.com/hobu)
founded the project, and he provides project leadership and software development. Andrew
Bell (https://github.com/abellgithub) has contributed design, refactoring, and new feature
development of PDAL over the past couple of years.

Michael Gerlek (http://github.com/mpgerlek) helped bootstrap PDAL by providing its first
design, basic primitive objects, and first stage implementations.

(https://grovercsllc.com/) Bradley Chambers
(https://github.com/chambbj) from Grover Consulting Services (https://grovercsllc.com/) has
contributed numerous features and capabilities to the PDAL project, including Poisson
sampling (page 301) and classification filters such as the SMRF filter (page 198). He is also a
prolific Tutorials (page 385) writer.

590 Chapter 14. Development

http://hobu.co
http://hobu.co
https://github.com/hobu
https://github.com/abellgithub
https://github.com/abellgithub
http://github.com/mpgerlek
https://grovercsllc.com/
https://github.com/chambbj
https://grovercsllc.com/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Funding Contributors

(http://www.erdc.usace.army.mil/Locations/CRREL.aspx) The
US Army Corps of Engineers Remote Sensing / GIS Center of Expertise at CRREL
(http://www.erdc.usace.army.mil/Locations/CRREL.aspx) sponsors development of PDAL for
its use in point cloud data management systems. CRREL
(http://www.erdc.usace.army.mil/Locations/CRREL.aspx)’s GRiD (http://lidar.io/about.html)
project manages LiDAR and point cloud data for a multitude of U.S. Army Corps missions.
Find out more about GRiD in this LiDAR Magazine article
(http://www.lidarmag.com/content/view/11343/198/).

(http://www.nsf.gov) (http://www.uh.edu) NSF
(http://www.nsf.gov), in collaboration with Dr. Craig Glennie
(http://www.cive.uh.edu/faculty/glennie) at the University of Houston (http://www.uh.edu)
supports PDAL with funding support to develop and enhance statistical methods,
transformation operations, tutorial and example development, and PCL (http://pointclouds.org)
integration.

14.2.3 Docs

Requirements

To build the PDAL documentation yourself, you need to install the following items:

• Sphinx (http://sphinx-doc.org/)

• Breathe (https://github.com/michaeljones/breathe)

14.2. Project 591

http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://lidar.io/about.html
http://www.lidarmag.com/content/view/11343/198/
http://www.nsf.gov
http://www.uh.edu
http://www.nsf.gov
http://www.cive.uh.edu/faculty/glennie
http://www.uh.edu
http://pointclouds.org
http://sphinx-doc.org/
https://github.com/michaeljones/breathe

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Doxygen (http://www.stack.nl/~dimitri/doxygen/)

• Latex (https://en.wikipedia.org/wiki/LaTeX)

• dvipng (https://en.wikipedia.org/wiki/Dvipng)

Sphinx (http://sphinx-doc.org/) and Breathe (https://github.com/michaeljones/breathe)

Python dependencies should be installed from PyPI (https://pypi.python.org/pypi) with pip or
easy_install.

(sudo) pip install sphinx sphinxconfig-bibtex breathe

Note: If you are installing these packages to a system-wide directory, you may need the sudo
in front of the pip, though it might be better that instead you use virtual environments
(https://pypi.python.org/pypi/virtualenv) instead of installing the packages system-wide.

Doxygen

The PDAL documentation also depends on Doxygen (http://www.stack.nl/~dimitri/doxygen/),
which can be installed from source or from binaries from the doxygen website
(http://www.stack.nl/~dimitri/doxygen/download.html). If you are on Max OS X and use
homebrew (http://mxcl.github.io/homebrew/), you can install doxygen with a simple brew
install doxygen.

Latex

Latex (https://en.wikipedia.org/wiki/LaTeX) and pdflatex
(https://www.tug.org/applications/pdftex/) are used to generate the companion PDF of the
website.

dvipng

For math output, we depend on dvipng (https://en.wikipedia.org/wiki/Dvipng) to turn Latex
(https://en.wikipedia.org/wiki/LaTeX) output into math PNGs.

592 Chapter 14. Development

http://www.stack.nl/~dimitri/doxygen/
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Dvipng
https://pypi.python.org/pypi
https://pypi.python.org/pypi/virtualenv
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/download.html
http://mxcl.github.io/homebrew/
https://en.wikipedia.org/wiki/LaTeX
https://www.tug.org/applications/pdftex/
https://en.wikipedia.org/wiki/Dvipng
https://en.wikipedia.org/wiki/LaTeX

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Generation

Once you have installed all the doc dependencies, you can then build the documentation itself.
The doc/ directory in the PDAL source tree contains a Makefile which can be used to build all
documentation. For a list of the output formats supported by Sphinx, simply type make. For
example, to build html documentation:

cd doc
make doxygen html

The html docs will be placed in doc/build/html/. The make doxygen is necessary to
re-generate the API documentation from the source code using Breathe
(https://github.com/michaeljones/breathe) and Sphinx (http://sphinx-doc.org/).

Note: For a full build of the C++ API (page 607) documentation, you need to make doxygen
to have it build its XML output which is consumed by Breathe
(https://github.com/michaeljones/breathe) before make html can be issued.

Website

The http://pdal.io website is regenerated from the *-maintenance branch using Github
Actions. It will be committed by the PDAL-docs GitHub (http://github.com/PDAL/PDAL) user
and pushed to the https://github.com/PDAL/pdal.github.io repository. The website is then
served via GitHub Pages (https://pages.github.com/).

14.2.4 Building Docker Containers for PDAL

PDAL’s repository (page 14) is linked to DockerHub (https://hub.docker.com/r/pdal/pdal/) for
automatic building of Docker (https://www.docker.com/) containers. PDAL keeps three Docker
containers current.

• pdal/ubuntu-dependencies:latest – PDAL’s dependencies

• pdal/pdal:latest – PDAL master

• pdal/pdal:1.5 – PDAL maintenance branch

Note: Containers are built upon the Dependencies (page 594) container, but the Dependencies
(page 594) container is not pinned to specific Bionic or PDAL release times. It corresponds to
where ever the dependencies tag of the PDAL source tree at https://github.com/PDAL/PDAL
resides

14.2. Project 593

https://github.com/michaeljones/breathe
http://sphinx-doc.org/
https://github.com/michaeljones/breathe
http://pdal.io
http://github.com/PDAL/PDAL
https://github.com/PDAL/pdal.github.io
https://pages.github.com/
https://hub.docker.com/r/pdal/pdal/
https://www.docker.com/
https://github.com/PDAL/PDAL

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dependencies

The PDAL dependencies Docker container is used by both the latest and release branch Docker
containers. The dependencies container is also used during Continuous Integration (page 605)
testing by Travis. It is built using the Dockerfile at
https://github.com/PDAL/PDAL/blob/master/scripts/docker/ubuntu/dependencies/Dockerfile

The pdal/dependencies:latest image is regenerated by force-pushing a tag of the SHA
you wish to use to have DockerHub (https://hub.docker.com/r/pdal/pdal/) build.

git tag -f dependencies
git push origin refs/tags/dependencies -f

Note: The dependencies container is currently built upon Ubuntu Bionic
(http://releases.ubuntu.com/18.04/). When the next Ubuntu LTS is released, the PDAL project
will likely move to it.

Maintenance

A PDAL container corresponding to the last major release is automatically created and
maintained with every commit to the active release branch. For example, the
1.4-maintenance branch will have a corresponding pdal/pdal:1.4 container made with
every commit on DockerHub (https://hub.docker.com/r/pdal/pdal/). Users are encouraged to
use these containers for testing, bug confirmation, and deployment

Fig. 1: Docker containers on maintenance branch correspond to major PDAL releases.

594 Chapter 14. Development

https://github.com/PDAL/PDAL/blob/master/scripts/docker/ubuntu/dependencies/Dockerfile
https://hub.docker.com/r/pdal/pdal/
http://releases.ubuntu.com/18.04/
https://hub.docker.com/r/pdal/pdal/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Latest (or master)

A PDAL container corresponding to a developer-selected release point is made available at
pdal/pdal:latest and corresponds to the manual push of a docker-master tag by PDAL
developers. This container is typically used for testing and verification of fixes, and it is
recommended that users looking to depend on PDAL’s Docker containers always use known
release versions off of the last stable release branch.

Warning: You should be using the Maintenance (page 594) Docker container for any
production-oriented operations. Only use the latest one to test or prototype a latest,
unreleased feature.

Fig. 2: The pdal/pdal:latest branch is current relative to the docker-master branch in
GitHub.

$ git tag -f docker-master
$ git push origin refs/tags/docker-master -f

14.2.5 Alpine

This page is intended to provide information about Alpine that may be useful for PDAL
developers, especially when it comes to adding new PDAL dependencies.

Packages

When adding a dependency to PDAL, you will need to update our Travis configuration for
continuous integration and testing, and Dockerfiles for automated builds. Begin by checking
for your package in https://pkgs.alpinelinux.org/packages. Packages containing binaries can
typically be found by searching for the library/package name alone. Development files are
typically grouped in a separate subpackage with -dev appended to the package name. Libraries
are sometimes grouped in yet another subpackage with -libs appended. It may take a little
inspection of the package contents to determine exactly what you are getting with a particular
package.

14.2. Project 595

https://pkgs.alpinelinux.org/packages

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

If a package does not yet exist, you’ll need to consult
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package or phone a friend. Alpine
developers can frequently be found on the IRC channel #alpine-devel.

Travis

We currently run our Travis CI builds by first pulling alpine:3.6 and then running a script
within the Alpine container. Any new dependencies that are required for PDAL to be built and
tested will need to be added to
https://github.com/PDAL/PDAL/blob/master/scripts/ci/script.sh.

Docker

Our Docker automated builds are built from the Dockerfiles located in
https://github.com/PDAL/PDAL/tree/master/scripts/docker. There are folders for each
supported release as well as master, and there are variants for Alpine and Ubuntu based images.
In the Alpine Dockerfiles, any development dependencies should be added in the apk add step
that uses the --virtual switch, as these will be deleted after compilation. Any runtime
dependencies should be added to the regular apk add step.

14.2.6 Testing

Unit Tests

A unit test framework is provided, with the goal that all (nontrivial) classes will have unit tests.
At the very least, each new class should have a corresponding unit test file stubbed in, even if
there aren’t any tests yet.

• Our unit tests also include testing of the command line Applications (page 27) and known
plugins.

• We use the Google C++ Test Framework (https://code.google.com/p/googletest/), but a
local copy of it is embedded in the PDAL source tree, and you don’t have to have it
available as a dependency.

• Unit tests for features that are configuration-dependent, e.g. laszip compression, should
be put under the same #ifdef guards as the classes being tested.

• The Support class, in the ./test/unit directory, provides some functions for
comparing files, etc, that are useful in writing test cases.

• Unit tests should not be long-running.

596 Chapter 14. Development

https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package
https://github.com/PDAL/PDAL/blob/master/scripts/ci/script.sh
https://github.com/PDAL/PDAL/tree/master/scripts/docker
https://code.google.com/p/googletest/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Running the Tests

To run all unit tests, issue the following command from your build directory:

$ ctest

make test or ninja test should still work as well.

Depending on the which optional components you’ve chose to build, your output should
resemble the following:

Test project /Users/hobu/dev/git/pdal
Start 1: pdal_bounds_test

1/61 Test #1: pdal_bounds_test Passed 0.02␣
→˓sec

Start 2: pdal_config_test
2/61 Test #2: pdal_config_test Passed 0.02␣
→˓sec

Start 3: pdal_file_utils_test
3/61 Test #3: pdal_file_utils_test Passed 0.02␣
→˓sec

Start 4: pdal_georeference_test
4/61 Test #4: pdal_georeference_test Passed 0.02␣
→˓sec

Start 5: pdal_kdindex_test
5/61 Test #5: pdal_kdindex_test Passed 0.03␣
→˓sec

Start 6: pdal_log_test
6/61 Test #6: pdal_log_test Passed 0.03␣
→˓sec

Start 7: pdal_metadata_test
7/61 Test #7: pdal_metadata_test Passed 0.02␣
→˓sec

Start 8: pdal_options_test
8/61 Test #8: pdal_options_test Passed 0.02␣
→˓sec

Start 9: pdal_pdalutils_test
9/61 Test #9: pdal_pdalutils_test Passed 0.02␣
→˓sec

Start 10: pdal_pipeline_manager_test
10/61 Test #10: pdal_pipeline_manager_test Passed 0.03␣
→˓sec

Start 11: pdal_point_view_test
11/61 Test #11: pdal_point_view_test Passed 2.03␣
→˓sec

(continues on next page)

14.2. Project 597

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Start 12: pdal_point_table_test

12/61 Test #12: pdal_point_table_test Passed 0.03␣
→˓sec

Start 13: pdal_spatial_reference_test
13/61 Test #13: pdal_spatial_reference_test Passed 0.07␣
→˓sec

Start 14: pdal_support_test
14/61 Test #14: pdal_support_test Passed 0.02␣
→˓sec

Start 15: pdal_user_callback_test
15/61 Test #15: pdal_user_callback_test Passed 0.02␣
→˓sec

Start 16: pdal_utils_test
16/61 Test #16: pdal_utils_test Passed 0.02␣
→˓sec

Start 17: pdal_lazperf_test
17/61 Test #17: pdal_lazperf_test Passed 0.04␣
→˓sec

Start 18: pdal_io_bpf_test
18/61 Test #18: pdal_io_bpf_test Passed 0.20␣
→˓sec

Start 19: pdal_io_buffer_test
19/61 Test #19: pdal_io_buffer_test Passed 0.02␣
→˓sec

Start 20: pdal_io_faux_test
20/61 Test #20: pdal_io_faux_test Passed 0.04␣
→˓sec

Start 21: pdal_io_ilvis2_test
21/61 Test #21: pdal_io_ilvis2_test Passed 0.06␣
→˓sec

Start 22: pdal_io_las_reader_test
22/61 Test #22: pdal_io_las_reader_test Passed 0.49␣
→˓sec

Start 23: pdal_io_las_writer_test
23/61 Test #23: pdal_io_las_writer_test Passed 2.27␣
→˓sec

Start 24: pdal_io_optech_test
24/61 Test #24: pdal_io_optech_test Passed 0.03␣
→˓sec

Start 25: pdal_io_ply_reader_test
25/61 Test #25: pdal_io_ply_reader_test Passed 0.03␣
→˓sec

Start 26: pdal_io_ply_writer_test
(continues on next page)

598 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
26/61 Test #26: pdal_io_ply_writer_test Passed 0.02␣
→˓sec

Start 27: pdal_io_qfit_test
27/61 Test #27: pdal_io_qfit_test Passed 0.03␣
→˓sec

Start 28: pdal_io_sbet_reader_test
28/61 Test #28: pdal_io_sbet_reader_test Passed 0.04␣
→˓sec

Start 29: pdal_io_sbet_writer_test
29/61 Test #29: pdal_io_sbet_writer_test Passed 0.03␣
→˓sec

Start 30: pdal_io_terrasolid_test
30/61 Test #30: pdal_io_terrasolid_test Passed 0.03␣
→˓sec

Start 31: pdal_filters_chipper_test
31/61 Test #31: pdal_filters_chipper_test Passed 0.03␣
→˓sec

Start 32: pdal_filters_colorization_test
32/61 Test #32: pdal_filters_colorization_test Passed 11.40␣
→˓sec

Start 33: pdal_filters_crop_test
33/61 Test #33: pdal_filters_crop_test Passed 0.04␣
→˓sec

Start 34: pdal_filters_decimation_test
34/61 Test #34: pdal_filters_decimation_test Passed 0.02␣
→˓sec

Start 35: pdal_filters_divider_test
35/61 Test #35: pdal_filters_divider_test Passed 0.03␣
→˓sec

Start 36: pdal_filters_ferry_test
36/61 Test #36: pdal_filters_ferry_test Passed 0.04␣
→˓sec

Start 37: pdal_filters_merge_test
37/61 Test #37: pdal_filters_merge_test Passed 0.03␣
→˓sec

Start 38: pdal_filters_reprojection_test
38/61 Test #38: pdal_filters_reprojection_test Passed 0.03␣
→˓sec

Start 39: pdal_filters_range_test
39/61 Test #39: pdal_filters_range_test Passed 0.05␣
→˓sec

Start 40: pdal_filters_randomize_test
40/61 Test #40: pdal_filters_randomize_test Passed 0.02␣

(continues on next page)

14.2. Project 599

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
→˓sec

Start 41: pdal_filters_sort_test
41/61 Test #41: pdal_filters_sort_test Passed 0.39␣
→˓sec

Start 42: pdal_filters_splitter_test
42/61 Test #42: pdal_filters_splitter_test Passed 0.03␣
→˓sec

Start 43: pdal_filters_stats_test
43/61 Test #43: pdal_filters_stats_test Passed 0.03␣
→˓sec

Start 44: pdal_filters_transformation_test
44/61 Test #44: pdal_filters_transformation_test ... Passed 0.03␣
→˓sec

Start 45: pdal_merge_test
45/61 Test #45: pdal_merge_test Passed 0.07␣
→˓sec

Start 46: pc2pc_test
46/61 Test #46: pc2pc_test Passed 0.15␣
→˓sec

Start 47: xml_schema_test
47/61 Test #47: xml_schema_test Passed 0.02␣
→˓sec

Start 48: pdal_filters_attribute_test
48/61 Test #48: pdal_filters_attribute_test Passed 0.09␣
→˓sec

Start 49: pdal_plugins_cpd_kernel_test
49/61 Test #49: pdal_plugins_cpd_kernel_test***Exception: Other␣
→˓ 0.08 sec

Start 50: hexbintest
50/61 Test #50: hexbintest Passed 0.03␣
→˓sec

Start 51: icetest
51/61 Test #51: icetest Passed 0.04␣
→˓sec

Start 52: mrsidtest
52/61 Test #52: mrsidtest Passed 0.06␣
→˓sec

Start 53: pdal_io_nitf_writer_test
53/61 Test #53: pdal_io_nitf_writer_test Passed 0.08␣
→˓sec

Start 54: pdal_io_nitf_reader_test
54/61 Test #54: pdal_io_nitf_reader_test Passed 0.04␣
→˓sec

(continues on next page)

600 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Start 55: ocitest

55/61 Test #55: ocitest***Failed 0.06␣
→˓sec

Start 56: pcltest
56/61 Test #56: pcltest Passed 0.28␣
→˓sec

Start 57: pgpointcloudtest
57/61 Test #57: pgpointcloudtest Passed 1.66␣
→˓sec

Start 58: plangtest
58/61 Test #58: plangtest Passed 0.14␣
→˓sec

Start 59: python_predicate_test
59/61 Test #59: python_predicate_test Passed 0.16␣
→˓sec

Start 60: python_programmable_test
60/61 Test #60: python_programmable_test Passed 0.15␣
→˓sec

Start 61: sqlitetest
61/61 Test #61: sqlitetest Passed 0.55␣
→˓sec

97% tests passed, 2 tests failed out of 61

Total Test time (real) = 21.57 sec

The following tests FAILED:
49 - pdal_plugins_cpd_kernel_test (OTHER_FAULT)
55 - ocitest (Failed)

For a more verbose output, use the -V flag. Or, to run an individual test suite, use -R <suite
name>. For example:

$ ctest -V -R pdal_io_bpf_test

Should produce output similar to:

UpdateCTestConfiguration from :/Users/hobu/dev/git/pdal/
→˓DartConfiguration.tcl
UpdateCTestConfiguration from :/Users/hobu/dev/git/pdal/

→˓DartConfiguration.tcl
Test project /Users/hobu/dev/git/pdal
Constructing a list of tests

(continues on next page)

14.2. Project 601

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
Done constructing a list of tests
Checking test dependency graph...
Checking test dependency graph end
test 18

Start 18: pdal_io_bpf_test

18: Test command: /Users/hobu/dev/git/pdal/bin/pdal_io_bpf_test
18: Environment variables:
18: PDAL_DRIVER_PATH=/Users/hobu/dev/git/pdal/lib
18: Test timeout computed to be: 9.99988e+06
18: [==========] Running 20 tests from 1 test case.
18: [----------] Global test environment set-up.
18: [----------] 20 tests from BPFTest
18: [RUN] BPFTest.test_point_major
18: [OK] BPFTest.test_point_major (8 ms)
18: [RUN] BPFTest.test_dim_major
18: [OK] BPFTest.test_dim_major (3 ms)
18: [RUN] BPFTest.test_byte_major
18: [OK] BPFTest.test_byte_major (4 ms)
18: [RUN] BPFTest.test_point_major_zlib
18: [OK] BPFTest.test_point_major_zlib (6 ms)
18: [RUN] BPFTest.test_dim_major_zlib
18: [OK] BPFTest.test_dim_major_zlib (4 ms)
18: [RUN] BPFTest.test_byte_major_zlib
18: [OK] BPFTest.test_byte_major_zlib (5 ms)
18: [RUN] BPFTest.roundtrip_byte
18: [OK] BPFTest.roundtrip_byte (15 ms)
18: [RUN] BPFTest.roundtrip_dimension
18: [OK] BPFTest.roundtrip_dimension (10 ms)
18: [RUN] BPFTest.roundtrip_point
18: [OK] BPFTest.roundtrip_point (11 ms)
18: [RUN] BPFTest.roundtrip_byte_compression
18: [OK] BPFTest.roundtrip_byte_compression (16 ms)
18: [RUN] BPFTest.roundtrip_dimension_compression
18: [OK] BPFTest.roundtrip_dimension_compression (13 ms)
18: [RUN] BPFTest.roundtrip_point_compression
18: [OK] BPFTest.roundtrip_point_compression (14 ms)
18: [RUN] BPFTest.roundtrip_scaling
18: [OK] BPFTest.roundtrip_scaling (10 ms)
18: [RUN] BPFTest.extra_bytes
18: [OK] BPFTest.extra_bytes (15 ms)
18: [RUN] BPFTest.bundled
18: [OK] BPFTest.bundled (17 ms)

(continues on next page)

602 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
18: [RUN] BPFTest.inspect
18: [OK] BPFTest.inspect (1 ms)
18: [RUN] BPFTest.mueller
18: [OK] BPFTest.mueller (0 ms)
18: [RUN] BPFTest.flex
18: [OK] BPFTest.flex (9 ms)
18: [RUN] BPFTest.flex2
18: [OK] BPFTest.flex2 (7 ms)
18: [RUN] BPFTest.outputdims
18: [OK] BPFTest.outputdims (14 ms)
18: [----------] 20 tests from BPFTest (182 ms total)
18:
18: [----------] Global test environment tear-down
18: [==========] 20 tests from 1 test case ran. (182 ms total)
18: [PASSED] 20 tests.
1/1 Test #18: pdal_io_bpf_test Passed 0.20 sec

The following tests passed:
pdal_io_bpf_test

100% tests passed, 0 tests failed out of 1

$ bin/pdal_io_test

Again, the output should resemble the following:

[==========] Running 20 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 20 tests from BPFTest
[RUN] BPFTest.test_point_major
[OK] BPFTest.test_point_major (7 ms)
[RUN] BPFTest.test_dim_major
[OK] BPFTest.test_dim_major (3 ms)
[RUN] BPFTest.test_byte_major
[OK] BPFTest.test_byte_major (4 ms)
[RUN] BPFTest.test_point_major_zlib
[OK] BPFTest.test_point_major_zlib (5 ms)
[RUN] BPFTest.test_dim_major_zlib
[OK] BPFTest.test_dim_major_zlib (5 ms)
[RUN] BPFTest.test_byte_major_zlib
[OK] BPFTest.test_byte_major_zlib (6 ms)
[RUN] BPFTest.roundtrip_byte

(continues on next page)

14.2. Project 603

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
[OK] BPFTest.roundtrip_byte (17 ms)
[RUN] BPFTest.roundtrip_dimension
[OK] BPFTest.roundtrip_dimension (10 ms)
[RUN] BPFTest.roundtrip_point
[OK] BPFTest.roundtrip_point (11 ms)
[RUN] BPFTest.roundtrip_byte_compression
[OK] BPFTest.roundtrip_byte_compression (15 ms)
[RUN] BPFTest.roundtrip_dimension_compression
[OK] BPFTest.roundtrip_dimension_compression (14 ms)
[RUN] BPFTest.roundtrip_point_compression
[OK] BPFTest.roundtrip_point_compression (14 ms)
[RUN] BPFTest.roundtrip_scaling
[OK] BPFTest.roundtrip_scaling (11 ms)
[RUN] BPFTest.extra_bytes
[OK] BPFTest.extra_bytes (16 ms)
[RUN] BPFTest.bundled
[OK] BPFTest.bundled (17 ms)
[RUN] BPFTest.inspect
[OK] BPFTest.inspect (1 ms)
[RUN] BPFTest.mueller
[OK] BPFTest.mueller (0 ms)
[RUN] BPFTest.flex
[OK] BPFTest.flex (8 ms)
[RUN] BPFTest.flex2
[OK] BPFTest.flex2 (7 ms)
[RUN] BPFTest.outputdims
[OK] BPFTest.outputdims (14 ms)
[----------] 20 tests from BPFTest (185 ms total)

[----------] Global test environment tear-down
[==========] 20 tests from 1 test case ran. (185 ms total)
[PASSED] 20 tests.

This invocation allows us to alter Google Test’s default behavior. For more on the available
flags type:

$ bin/<test_name> --help

Key among these flags are the ability to list tests (--gtest_list_tests) and to run only
select tests (--gtest_filter).

Note: If the PostgreSQL PointCloud plugin was enabled on the CMake command line (with
-DBUILD_PLUGIN_PGPOINTCLOUD=ON) then ctest will attempt to run the pgpointcloud

604 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

tests. And you will get PostgreSQL connection errors if the libpq environment variables
(https://www.postgresql.org/docs/current/static/libpq-envars.html) are not correctly set in your
shell. This is for example how you can run the pgpointcloud tests:

$ PGUSER=pdal PGPASSWORD=pdal PGHOST=localhost ctest -R pgpointcloudtest

Test Data

Use the directory ./test/data to store files used for unit tests. A vfunction is provided in the
Support class for referencing that directory in a configuration-independent manner.

Temporary output files from unit tests should go into the ./test/temp directory. A Support
function is provided for referencing this directory as well.

Unit tests should always clean up and remove any files that they create (except perhaps in case
of a failed test, in which case leaving the output around might be helpful for debugging).

14.2.7 Continuous Integration

PDAL regression tests (page 596) are run on a per-commit basis using GitHub Actions
(https://github.com/features/actions)

Status

Configuration

Continuous integration configuration is modified by manipulating configuration files in to
locations:

• ./github/workflows

• ./scripts/ci

Linux, OSX, and Windows builds are all configured separately with scripts in the
./scripts/ci directory.

14.2. Project 605

https://www.postgresql.org/docs/current/static/libpq-envars.html
https://github.com/features/actions

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Dependencies

All of the tests use Conda Forge for dependencies.

The Linux builder has a “fixed” configuration that pins GDAL to a specific version to prevent
the rest of the dependency tree from floating according to Conda Forge’s package dependency
rules.

Docs

Docs are always built and doc artifacts are attached to the build:

• HTML

• PDF

• Misspelled words

Push to pdal.io

Docs are pushed to pdal.io under the following conditions:

• Doc building succeeds

• The push branch denoted in ./github/workflows/docs.yaml matches the current
*-maintenance branch.

14.3 API

PDAL is a C++ library, and its primary API is in that language. There is also a Python
(page 375) API that allows reading of data and interaction with Numpy
(http://www.numpy.org/).

Note: Users looking for documentation on how to use PDAL’s command line applications
should look here (page 27) and users looking for documentation on how to contribute to PDAL
should look here (page 529).

606 Chapter 14. Development

http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.3.1 C++ API

pdal::BOX2D

class BOX2D
BOX2D (page 607) represents a two-dimensional box with double-precision bounds.

Subclassed by pdal::BOX3D (page 611)

Public Functions

inline BOX2D()
Construct an “empty” bounds box.

inline BOX2D(double minx, double miny, double maxx, double maxy)
Construct and initialize a bounds box.

Parameters

• minx – Minimum X value.

• miny – Minimum Y value.

• maxx – Maximum X value.

• maxy – Maximum Y value.

bool empty() const
Determine whether a bounds box has not had any bounds set.

Returns
Whether the bounds box is empty.

bool valid() const
Determine whether a bounds box has had any bounds set.

Returns
Whether the bounds box is valid.

void clear()
Clear the bounds box to an empty state.

BOX2D (page 607) &grow(double x, double y)
Expand the bounds of the box to include the specified point.

Parameters

• x – X point location.

• y – Y point location.

14.3. API 607

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

BOX2D (page 607) &grow(double dist)
Expand the bounds of the box in all directions by a specified amount.

Parameters
dist – Distance by which to expand the box.

inline bool contains(double x, double y) const
Determine if a bounds box contains a point.

Parameters

• x – X dimension value.

• y – Y dimension value.

Returns
Whether both dimensions are equal to or less than the maximum box
values and equal to or more than the minimum box values.

inline bool equal(const BOX2D (page 607) &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Parameters
other – Bounds box to check for equality.

Returns
true if the provided box has equal limits to this box, false otherwise.

inline bool operator==(BOX2D (page 607) const &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Parameters
other – Bounds box to check for equality.

Returns
true if the provided box has equal limits to this box, false otherwise.

inline bool operator!=(BOX2D (page 607) const &other) const
Determine if the bounds of this box are different from that of another box.

Empty bounds boxes are never unequal.

Parameters
other – Bounds box to check for inequality.

Returns
true if the provided box has limits different from this box, false
otherwise.

608 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline BOX2D (page 607) &grow(const BOX2D (page 607) &other)
Expand this box to contain another box.

Parameters
other – Box that this box should contain.

inline void clip(const BOX2D (page 607) &other)
Clip this bounds box by another so it will be contained by the other box.

Parameters
other – Clipping box for this box.

inline bool contains(const BOX2D (page 607) &other) const
Determine if another bounds box is contained in this bounds box.

Equal limits are considered to be contained.

Parameters
other – Bounds box to check for containment.

Returns
true if the provided box is contained in this box, false otherwise.

inline bool overlaps(const BOX2D (page 607) &other) const
Determine if another box overlaps this box.

Parameters
other – Box to test for overlap.

Returns
Whether the provided box overlaps this box.

inline std::string toBox(uint32_t precision = 8) const
Convert this box to a string suitable for use in SQLite.

Parameters
precision – Precision for output [default: 8]

Returns
String format of this box.

inline std::string toWKT(uint32_t precision = 8) const
Convert this box to a well-known text string.

Parameters
precision – Precision for output [default: 8]

Returns
String format of this box.

14.3. API 609

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline std::string toGeoJSON(uint32_t precision = 8) const
Convert this box to a GeoJSON text string.

Parameters
precision – Precision for output [default: 8]

Returns
String format of this box.

void parse(const std::string &s, std::string::size_type &pos)
Parse a string as a BOX2D (page 607).

Parameters

• s – String representation of the box.

• pos – Position in the string at which to start parsing. On return set
to parsing end position.

Public Members

double minx
Minimum X value.

double maxx
Maximum X value.

double miny
Minimum Y value.

double maxy
Maximum Y value.

std::string wkt
WKT/PROJJSON/EPSG:code/etc GDAL-readable SRS format.

610 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Static Functions

static const BOX2D (page 607) &getDefaultSpatialExtent()
Return a statically-allocated Bounds extent that represents infinity.

Returns
A bounds box with infinite bounds,

struct error : public std::runtime_error

Public Functions

inline error(const std::string &err)

class BOX3D : private pdal::BOX2D (page 607)
BOX3D (page 611) represents a three-dimensional box with double-precision bounds.

Public Functions

inline BOX3D()
Clear the bounds box to an empty state.

inline BOX3D(const BOX3D (page 611) &box)

BOX3D (page 611) &operator=(const BOX3D (page 611) &box) = default

inline explicit BOX3D(const BOX2D (page 607) &box)

inline BOX3D(double minx, double miny, double minz, double maxx, double maxy,
double maxz)

Construct and initialize a bounds box.

Parameters

• minx – Minimum X value.

• miny – Minimum Y value.

• minx – Minimum Z value.

• maxx – Maximum X value.

• maxy – Maximum Y value.

• maxz – Maximum Z value.

14.3. API 611

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

bool empty() const
Determine whether a bounds box has not had any bounds set (is in a state as if
default-constructed).

Returns
Whether the bounds box is empty.

bool valid() const
Determine whether a bounds box has had any bounds set.

Returns
\true if the bounds box is not empty

BOX3D (page 611) &grow(double x, double y, double z)
Expand the bounds of the box if a value is less than the current minimum or greater
than the current maximum.

If the bounds box is currently empty, both minimum and maximum box bounds will
be set to the provided value.

Parameters

• x – X dimension value.

• y – Y dimension value.

• z – Z dimension value.

void clear()
Clear the bounds box to an empty state.

inline bool contains(double x, double y, double z) const
Determine if a bounds box contains a point.

Parameters

• x – X dimension value.

• y – Y dimension value.

• z – Z dimension value.

Returns
Whether both dimensions are equal to or less than the maximum box
values and equal to or more than the minimum box values.

inline bool contains(const BOX3D (page 611) &other) const
Determine if another bounds box is contained in this bounds box.

Equal limits are considered to be contained.

Parameters
other – Bounds box to check for containment.

612 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
true if the provided box is contained in this box, false otherwise.

inline bool equal(const BOX3D (page 611) &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Parameters
other – Bounds box to check for equality.

Returns
true if the provided box has equal limits to this box, false otherwise.

inline bool operator==(BOX3D (page 611) const &rhs) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Parameters
other – Bounds box to check for equality.

Returns
true if the provided box has equal limits to this box, false otherwise.

inline bool operator!=(BOX3D (page 611) const &rhs) const
Determine if the bounds of this box are different from that of another box.

Empty bounds boxes are never unequal.

Parameters
other – Bounds box to check for inequality.

Returns
true if the provided box has limits different from this box, false
otherwise.

inline BOX3D (page 611) &grow(const BOX3D (page 611) &other)
Expand this box to contain another box.

Parameters
other – Box that this box should contain.

inline BOX3D (page 611) &grow(double dist)
Expand this box by a specified amount.

Parameters
dist – Distance by which box should be expanded.

inline void clip(const BOX3D (page 611) &other)
Clip this bounds box by another so it will be contained by the other box.

14.3. API 613

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters
other – Clipping box for this box.

inline bool overlaps(const BOX3D (page 611) &other) const
Determine if another box overlaps this box.

Parameters
other – Box to test for overlap.

Returns
Whether the provided box overlaps this box.

inline BOX2D (page 607) to2d() const
Convert this box to 2-dimensional bounding box.

Returns
Bounding box with Z dimension stripped.

inline std::string toBox(uint32_t precision = 8) const
Convert this box to a string suitable for use in SQLite.

Parameters
precision – Precision for output [default: 8]

Returns
String format of this box.

inline std::string toWKT(uint32_t precision = 8) const
Convert this box to a well-known text string.

Parameters
precision – Precision for output [default: 8]

Returns
String format of this box.

void parse(const std::string &s, std::string::size_type &pos)
Parse a string as a BOX3D (page 611).

Parameters

• s – String representation of the box.

• pos – Position in the string at which to start parsing. On return set
to parsing end position.

614 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Members

double minz
Minimum Z value.

double maxz
Maximum Z value.

double minx
Minimum X value.

double maxx
Maximum X value.

double miny
Minimum Y value.

double maxy
Maximum Y value.

std::string wkt
WKT/PROJJSON/EPSG:code/etc GDAL-readable SRS format.

Public Static Functions

static const BOX3D (page 611) &getDefaultSpatialExtent()
Return a statically-allocated Bounds extent that represents infinity.

Returns
A bounds box with infinite bounds,

struct error : public std::runtime_error

14.3. API 615

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Functions

inline error(const std::string &err)

pdal::Charbuf

class Charbuf : public std::streambuf
Allow a data buffer to be used at a std::streambuf.

Public Functions

inline Charbuf()
Construct an empty Charbuf (page 616).

inline Charbuf(std::vector<char> &v, pos_type bufOffset = 0)
Construct a Charbuf (page 616) that wraps a byte vector.

Parameters

• v – Byte vector to back streambuf.

• bufOffset – Offset in vector (ignore bytes before offset).

inline Charbuf(char *buf, size_t count, pos_type bufOffset = 0)
Construct a Charbuf (page 616) that wraps a byte buffer.

Parameters

• buf – Buffer to back streambuf.

• count – Size of buffer.

• bufOffset – Offset in vector (ignore bytes before offset).

void initialize(char *buf, size_t count, pos_type bufOffset = 0)
Set a buffer to back a Charbuf (page 616).

Parameters

• buf – Buffer to back streambuf.

• count – Size of buffer.

• bufOffset – Offset in vector (ignore bytes before offset).

616 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::ColumnPointTable

class ColumnPointTable : public pdal::SimplePointTable

Public Functions

inline ColumnPointTable()

virtual ~ColumnPointTable()

inline virtual bool supportsView() const

virtual void finalize()

inline virtual char *getPoint(PointId idx)

pdal::Dimension

namespace Dimension

Typedefs

typedef std::vector<Detail (page 619)> DetailList

Enums

enum class BaseType
Values:

enumerator None

enumerator Signed

enumerator Unsigned

enumerator Floating

14.3. API 617

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

enum class Type
Values:

enumerator None

enumerator Unsigned8

enumerator Signed8

enumerator Unsigned16

enumerator Signed16

enumerator Unsigned32

enumerator Signed32

enumerator Unsigned64

enumerator Signed64

enumerator Float

enumerator Double

Functions

inline BaseType (page 617) fromName(std::string name)

inline std::string toName(BaseType (page 617) b)

inline std::size_t size(Type (page 617) t)

inline BaseType (page 617) base(Type (page 617) t)

inline std::string interpretationName(Type (page 617) dimtype)
Get a string reresentation of a datatype.

Parameters
dimtype – [in] Dimension (page 617) type.

618 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
String representation of dimension type.

inline Type (page 617) type(std::string s)
Get the type corresponding to a type name.

Parameters
s – Name of type.

Returns
Corresponding type enumeration value.

inline Type (page 617) type(const std::string &baseType, size_t size)

inline std::size_t extractName(const std::string &s, std::string::size_type p)
Extract a dimension name of a string.

Dimension (page 617) names start with an alpha and continue with numbers or
underscores.

Parameters

• s – String from which to extract dimension name.

• p – Position at which to start extracting.

Returns
Number of characters in the extracted name.

inline std::string fixName(std::string name)

inline bool nameValid(std::string name)

inline std::istream &operator>>(std::istream &in, Dimension (page 617)::Type
(page 617) &type)

inline std::ostream &operator<<(std::ostream &out, const Dimension (page 617)::Type
(page 617) &type)

Variables

static const int COUNT = 1024

static const int PROPRIETARY = 512

class Detail
#include <DimDetail.hpp>

14.3. API 619

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Extractor

class Extractor
Buffer wrapper for input of binary data from a buffer.

Subclassed by pdal::BeExtractor, pdal::LeExtractor, pdal::SwitchableExtractor

Public Functions

inline Extractor(const char *buf, std::size_t size)
Construct an extractor to operate on a buffer.

Parameters

• buf – Buffer to extract from.

• size – Buffer size.

inline operator bool()
Determine if the buffer is good.

Returns
Whether the buffer is good.

inline void seek(std::size_t pos)
Seek to a position in the buffer.

Parameters
pos – Position to seek in buffer.

inline void skip(std::size_t cnt)
Advance buffer position.

Parameters
cnt – Number of bytes to skip in buffer.

inline size_t position() const
Return the get position of buffer.

Returns
Get position.

inline bool good() const
Determine whether the extractor is good (the get pointer is in the buffer).

Returns
Whether the get pointer is valid.

620 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void get(std::string &s, size_t size)
Extract a string of a particular size from the buffer.

Trim trailing null bytes.

Parameters

• s – String to extract to.

• size – Number of bytes to extract from buffer into string.

inline void get(std::vector<char> &buf)
Extract data to char vector.

Vector must be sized to indicate number of bytes to extract.

Parameters
buf – Vector to which bytes should be extracted.

inline void get(std::vector<unsigned char> &buf)
Extract data to unsigned char vector.

Vector must be sized to indicate number of bytes to extract.

Parameters
buf – Vector to which bytes should be extracted.

inline void get(char *buf, size_t size)
Extract data into a provided buffer.

Parameters

• buf – Pointer to buffer to which bytes should be extracted.

• size – Number of bytes to extract.

inline void get(unsigned char *buf, size_t size)
Extract data into a provided unsigned buffer.

Parameters

• buf – Pointer to buffer to which bytes should be extracted.

• size – Number of bytes to extract.

virtual Extractor (page 620) &operator>>(uint8_t &v) = 0

virtual Extractor (page 620) &operator>>(int8_t &v) = 0

virtual Extractor (page 620) &operator>>(uint16_t &v) = 0

virtual Extractor (page 620) &operator>>(int16_t &v) = 0

14.3. API 621

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

virtual Extractor (page 620) &operator>>(uint32_t &v) = 0

virtual Extractor (page 620) &operator>>(int32_t &v) = 0

virtual Extractor (page 620) &operator>>(uint64_t &v) = 0

virtual Extractor (page 620) &operator>>(int64_t &v) = 0

virtual Extractor (page 620) &operator>>(float &v) = 0

virtual Extractor (page 620) &operator>>(double &v) = 0

pdal::FileUtils

namespace FileUtils

Functions

std::string toNative(const std::string &in)

std::string fromNative(const std::string &in)

std::istream *openFile(std::string const &filename, bool asBinary = true)
Open an existing file for reading.

Parameters

• filename – Filename.

• asBinary – Read as binary file (don’t convert /r/n to /n)

Returns
Pointer to opened stream.

std::ostream *createFile(std::string const &filename, bool asBinary = true)
Create/truncate a file and open for writing.

Parameters

• filename – Filename.

• asBinary – Write as binary file (don’t convert /n to /r/n)

Returns
Point to opened stream.

622 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::ostream *openExisting(std::string const &filename, bool asBinary = true)
Open an existing file for write.

Parameters

• filename – Filename.

• asBinary – Write as binary file (don’t convert /n to /r/n)

Returns
Point to opened stream.

bool directoryExists(const std::string &dirname)
Determine if a directory exists.

Parameters
dirname – Name of directory.

Returns
Whether a directory exists.

bool createDirectory(const std::string &dirname)
Create a directory.

Parameters
dirname – Directory name.

Returns
Whether the directory was created.

bool createDirectories(const std::string &path)
Create all directories in the provided path.

Parameters
dirname – Path name.

Returns
\false on failure

void deleteDirectory(const std::string &dirname)
Delete a directory and its contents.

Parameters
dirname – Directory name.

std::vector<std::string> directoryList(const std::string &dirname)
List the contents of a directory.

Parameters
dirname – Name of directory to list.

Returns
List of entries in the directory.

14.3. API 623

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

void closeFile(std::ostream *ofs)
Close a file created with createFile.

Parameters
ofs – Pointer to stream to close.

void closeFile(std::istream *ifs)
Close a file created with openFile.

Parameters
ifs – Pointer to stream to close.

bool deleteFile(const std::string &filename)
Delete a file.

Parameters
filename – Name of file to delete.

Returns
true if successful, false otherwise

void renameFile(const std::string &dest, const std::string &src)
Rename a file.

Parameters

• dest – Desired filename.

• src – Source filename.

bool fileExists(const std::string &filename)
Determine if a file exists.

Parameters
Filename. –

Returns
Whether the file exists.

uintmax_t fileSize(const std::string &filename)
Get the size of a file.

Parameters
filename – Filename.

Returns
0 on error or invalid file type.

Returns
Size of file.

624 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::string readFileIntoString(const std::string &filename)
Read a file into a string.

Parameters
filename – Filename.

Returns
File contents as a string

std::string getcwd()
Get the current working directory with trailing separator.

Returns
The current working directory.

std::string toCanonicalPath(std::string filename)
Return the path with all “.”, “..” and symbolic links removed.

The file must exist.

Parameters
filename – Name of file to convert to canonical path.

Returns
Canonical version of provided filename, or empty string.

std::string toAbsolutePath(const std::string &filename)
If the filename is an absolute path, just return it otherwise, make it absolute (relative
to current working dir) and return it.

Parameters
filename – Name of file to convert to absolute path.

Returns
Absolute version of provided filename.

std::string toAbsolutePath(const std::string &filename, const std::string base)
If the filename is an absolute path, just return it otherwise, make it absolute (relative
to base dir) and return that.

Parameters

• filename – Name of file to convert to absolute path.

• base – Base name to use.

Returns
Absolute version of provided filename relative to base.

std::string getFilename(const std::string &path)
Return the file component of the given path, e.g.

“d:/foo/bar/a.c” -> “a.c”

14.3. API 625

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters
path – Path from which to extract file component.

Returns
File part of path.

std::string getDirectory(const std::string &path)
Return the directory component of the given path, e.g.

“d:/foo/bar/a.c” -> “d:/foo/bar/”

Parameters
path – Path from which to extract directory component.

Returns
Directory part of path.

std::string stem(const std::string &path)
Return the filename stripped of the extension.

. and .. are returned unchanged.

Parameters
path – File path from which to extract file stem.

Returns
Stem of filename.

bool isDirectory(const std::string &path)
Determine if path is a directory.

Parameters
path – Directory to check.

Returns
Whether the path represents a directory.

bool isAbsolutePath(const std::string &path)
Determine if the path is an absolute path.

Parameters
path – Path to test.

Returns
Whether the path is absolute.

void fileTimes(const std::string &filename, struct tm *createTime, struct tm
*modTime)

Get the file creation and modification times.

Parameters

• filename – Filename.

626 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• createTime – Pointer to creation time structure.

• modTime – Pointer to modification time structure.

std::string extension(const std::string &path)
Return the extension of the filename, including the separator (.).

Parameters
path – File path from which to extract extension.

Returns
Extension of filename.

std::vector<std::string> glob(std::string filespec)
Expand a filespec to a list of files.

Parameters
filespec – File specification to expand.

Returns
List of files that correspond to provided file specification.

MapContext (page 627) mapFile(const std::string &filename, bool readOnly = true,
uintmax_t pos = 0, uintmax_t size = 0)

Map a file to memory.

Parameters

• filename – Filename to map.

• readOnly – Must be true at this time.

• pos – Starting position of file to map.

• size – Number of bytes in file to map.

Returns
MapContext (page 627). addr() gets the mapped address. what() gets
any error message. addr() returns nullptr on error.

MapContext (page 627) unmapFile(MapContext (page 627) ctx)
Unmap a previously mapped file.

Parameters
ctx – Previously returned MapContext (page 627)

Returns
MapContext (page 627) indicating current state of the file mapping.

struct MapContext
#include <FileUtils.hpp>

14.3. API 627

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Filter

class Filter : public virtual pdal::Stage (page 646)
Subclassed by pdal::ApproximateCoplanarFilter, pdal::AssignFilter, pdal::CSFilter,
pdal::ChipperFilter, pdal::ClusterFilter, pdal::ColorinterpFilter, pdal::ColorizationFilter,
pdal::CovarianceFeaturesFilter, pdal::CpdFilter, pdal::CropFilter, pdal::DBSCANFilter,
pdal::DEMFilter, pdal::DecimationFilter, pdal::DelaunayFilter, pdal::DividerFilter,
pdal::ELMFilter, pdal::EigenvaluesFilter, pdal::EstimateRankFilter,
pdal::ExpressionFilter, pdal::FaceRasterFilter, pdal::FarthestPointSamplingFilter,
pdal::FerryFilter, pdal::GeomDistanceFilter, pdal::GeoreferenceFilter,
pdal::GpsTimeConvert, pdal::GreedyProjection, pdal::GridDecimationFilter,
pdal::GroupByFilter, pdal::H3Filter, pdal::HagDelaunayFilter, pdal::HagDemFilter,
pdal::HagNnFilter, pdal::HeadFilter, pdal::HexBin, pdal::IQRFilter, pdal::InfoFilter,
pdal::IterativeClosestPoint, pdal::LOFFilter, pdal::LiTreeFilter,
pdal::LloydKMeansFilter, pdal::LocateFilter, pdal::MADFilter, pdal::MatlabFilter,
pdal::MergeFilter, pdal::MiniballFilter, pdal::MongoExpressionFilter,
pdal::MortonOrderFilter, pdal::NNDistanceFilter, pdal::NeighborClassifierFilter,
pdal::NormalFilter, pdal::OptimalNeighborhood, pdal::OutlierFilter, pdal::OverlayFilter,
pdal::PMFFilter, pdal::PlaneFitFilter, pdal::PoissonFilter, pdal::ProjPipelineFilter,
pdal::RadialDensityFilter, pdal::RandomizeFilter, pdal::RangeFilter,
pdal::ReciprocityFilter, pdal::RelaxationDartThrowing, pdal::ReprojectionFilter,
pdal::ReturnsFilter, pdal::SMRFilter, pdal::SampleFilter, pdal::SeparateScanLineFilter,
pdal::ShellFilter, pdal::SkewnessBalancingFilter, pdal::SortFilter,
pdal::SparseSurfaceFilter, pdal::SplitterFilter, pdal::StatsFilter, pdal::StraightenFilter,
pdal::StreamCallbackFilter, pdal::TailFilter, pdal::TeaserFilter, pdal::Trajectory,
pdal::TransformationFilter, pdal::VoxelCenterNearestNeighborFilter,
pdal::VoxelCentroidNearestNeighborFilter, pdal::VoxelDownsizeFilter,
pdal::ZsmoothFilter

Public Functions

Filter()

~Filter()

Filter (page 628) &operator=(const Filter (page 628)&) = delete

Filter(const Filter (page 628)&) = delete

struct Args

628 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Members

expr::ConditionalExpression m_where

Arg *m_whereArg

Filter (page 628)::WhereMergeMode m_whereMerge

Arg *m_whereMergeArg

pdal::IStream

class IStream
Stream wrapper for input of binary data.

Subclassed by pdal::IBeStream, pdal::ILeStream, pdal::ISwitchableStream

Public Functions

inline IStream()
Default constructor.

inline IStream(const std::string &filename)
Construct an IStream (page 629) from a filename.

Parameters
filename – File from which to read.

inline IStream(std::istream *stream)

Construct an IStream (page 629) from an input stream pointer.

Parameters
stream – Stream from which to read.

inline ~IStream()

inline int open(const std::string &filename)
Open a file to extract.

Parameters
filename – Filename.

Returns
-1 if a stream is already assigned, 0 otherwise.

14.3. API 629

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void close()
Close the underlying stream.

inline operator bool()
Return the state of the stream.

Returns
The state of the underlying stream.

inline void seek(std::streampos pos)
Seek to a position in the underlying stream.

Parameters
pos – Position to seek to,

inline void seek(std::streampos off, std::ios_base::seekdir way)
Seek to an offset from a specified position.

Parameters

• off – Offset.

• way – Absolute position for offset (beg, end or cur)

inline void skip(std::streamoff offset)
Skip relative to the current position.

Parameters
offset – Offset from the current position.

inline std::streampos position() const
Determine the position of the get pointer.

Returns
Current get position.

inline bool good() const
Determine if the underlying stream is good.

Returns
Whether the underlying stream is good.

inline std::istream *stream()
Fetch a pointer to the underlying stream.

Returns
Pointer to the underlying stream.

inline void pushStream(std::istream *strm)

Temporarily push a stream to read from.

630 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters
strm – New stream to read from.

inline std::istream *popStream()
Pop the current stream and return it.

The last stream on the stack cannot be popped.

Returns
Pointer to the popped stream.

inline void get(std::string &s, size_t size)
Fetch data from the stream into a string.

NOTE - Stops when a null byte is encountered. Use a buffer/vector reader to read
data with embedded nulls.

Parameters

• s – String to fill.

• size – Maximum number of bytes to extract.

inline void get(std::vector<char> &buf)
Fetch data from the stream into a vector of char.

Parameters
buf – Buffer to fill.

inline void get(std::vector<unsigned char> &buf)
Fetch data from the stream into a vector of unsigned char.

Parameters
buf – Buffer to fill.

inline void get(char *buf, size_t size)
Fetch data from the stream into the specified buffer of char.

Parameters

• buf – Buffer to fill.

• size – Number of bytes to extract.

inline void get(unsigned char *buf, size_t size)
Fetch data from the stream into the specified buffer of unsigned char.

Parameters

• buf – Buffer to fill.

• size – Number of bytes to extract.

14.3. API 631

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Log

class Log
pdal::Log (page 632) is a logging object that is provided by pdal::Stage (page 646) to
facilitate logging operations.

Log stream operations

inline std::ostream *getLogStream()

Returns
the stream object that is currently being used to for log operations
regardless of logging level of the instance.

std::ostream &get(LogLevel level = LogLevel::Info)
Returns the log stream given the logging level.

Parameters
level – logging level to request If the logging level asked for with
pdal::Log::get (page 632) is less than the logging level of the
pdal::Log (page 632) instance

void floatPrecision(int level)
Sets the floating point precision.

void clearFloat()
Clears the floating point precision settings of the streams.

Destructor

~Log()

The destructor will clean up its own internal log stream, but it will not touch one
that is given via the constructor.

Logging level

inline LogLevel getLevel()

Returns
the logging level of the pdal::Log (page 632) instance

inline void setLevel(LogLevel v)
Sets the logging level of the pdal::Log (page 632) instance.

632 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters
v – logging level to use for get() (page 632) comparison operations

inline void setLeader(const std::string &leader)
Set the leader string (deprecated).

Parameters
leader – [in] Leader string.

inline void pushLeader(const std::string &leader)
Push the leader string onto the stack.

Parameters
leader – Leader string

inline std::string leader() const
Get the leader string.

Returns
The current leader string.

inline void popLeader()
Pop the current leader string.

std::string getLevelString(LogLevel v) const

Returns
A string representing the LogLevel

Public Static Functions

static LogPtr makeLog(std::string const &leaderString, std::string const &outputName,
bool timing = false)

static LogPtr makeLog(std::string const &leaderString, std::ostream *v, bool timing =
false)

pdal::Metadata

class Metadata

14.3. API 633

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Functions

inline Metadata()

inline Metadata(const std::string &name)

inline MetadataNode (page 634) getNode() const

Public Static Functions

static std::string inferType(const std::string &val)

class MetadataNode

Public Functions

inline MetadataNode()

inline MetadataNode(const std::string &name)

inline MetadataNode (page 634) add(const std::string &name)

inline MetadataNode (page 634) addList(const std::string &name)

inline MetadataNode (page 634) clone(const std::string &name) const

inline MetadataNode (page 634) add(MetadataNode (page 634) node)

inline MetadataNode (page 634) addList(MetadataNode (page 634) node)

inline MetadataNode (page 634) addEncoded(const std::string &name, const unsigned
char *buf, size_t size, const std::string
&descrip = std::string())

inline MetadataNode (page 634) addListEncoded(const std::string &name, const
unsigned char *buf, size_t size,
const std::string &descrip =
std::string())

inline MetadataNode (page 634) addWithType(const std::string &name, const
std::string &value, const std::string
&type, const std::string &descrip)

634 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline MetadataNode (page 634) add(const std::string &name, const double &value,
const std::string &descrip = std::string(), size_t
precision = 10)

template<typename T>
inline MetadataNode (page 634) add(const std::string &name, const T (page 635)

&value, const std::string &descrip = std::string())

template<typename T>
inline MetadataNode (page 634) addList(const std::string &name, const T (page 635)

&value, const std::string &descrip =
std::string())

inline MetadataNode (page 634) addOrUpdate(const std::string &lname, const double
&value, const std::string &descrip =
std::string(), size_t precision = 10)

template<typename T>
inline MetadataNode (page 634) addOrUpdate(const std::string &lname, const T

(page 635) &value)

template<typename T>
inline MetadataNode (page 634) addOrUpdate(const std::string &lname, const T

(page 635) &value, const std::string
&descrip)

inline MetadataNode (page 634) addOrUpdate(MetadataNode (page 634) n)

inline std::string type() const

inline MetadataType kind() const

inline std::string name() const

template<typename T>
inline T (page 635) value() const

inline std::string value() const

inline std::string jsonValue() const

inline std::string description() const

inline MetadataNodeList children() const

inline MetadataNodeList children(const std::string &name) const

inline bool hasChildren() const

14.3. API 635

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline std::vector<std::string> childNames() const

inline operator bool() const

inline bool operator!()

inline bool valid() const

inline bool empty() const

template<typename PREDICATE>
inline MetadataNode (page 634) find(PREDICATE (page 636) p) const

template<typename PREDICATE>
inline MetadataNodeList findChildren(PREDICATE (page 636) p)

template<typename PREDICATE>
inline MetadataNode (page 634) findChild(PREDICATE (page 636) p) const

inline MetadataNode (page 634) findChild(const char *s) const

inline MetadataNode (page 634) findChild(std::string s) const

pdal::Options

class Options

Public Functions

inline Options()

inline explicit Options(const Option &opt)

void add(const Option &option)

void add(const Options (page 636) &options)

void addConditional(const Option &option)

void addConditional(const Options (page 636) &option)

void remove(const Option &option)

inline void replace(const Option &option)

inline void toMetadata(MetadataNode (page 634) &parent) const

template<typename T>

636 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void add(const std::string &name, T (page 636) value)

inline void add(const std::string &name, const std::string &value)

inline void add(const std::string &name, const bool &value)

template<typename T>
inline void replace(const std::string &name, T (page 637) value)

inline void replace(const std::string &name, const std::string &value)

inline void replace(const std::string &name, const bool &value)

inline StringList getValues(const std::string &name) const

inline StringList getKeys() const

std::vector<Option> getOptions(std::string const &name = "") const

StringList toCommandLine() const
Convert options to a string list appropriate for parsing with ProgramArgs
(page 641).

Returns
List of options as argument strings.

Public Static Functions

static Options (page 636) fromFile(const std::string &filename, bool
throwOnOpenError = true)

pdal::PointTable

pdal::PointTable is an alias for pdal::RowPointTable (page 645)

pdal::PointView

class PointView : public pdal::PointContainer

14.3. API 637

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Functions

PointView(const PointView (page 638)&) = delete

PointView (page 637) &operator=(const PointView (page 637)&) = delete

PointView(PointTableRef pointTable)

PointView(PointTableRef pointTable, const SpatialReference &srs)

virtual ~PointView()

PointViewIter begin()

PointViewIter end()

inline int id() const

inline point_count_t size() const

inline bool empty() const

inline void appendPoint(const PointView (page 637) &buffer, PointId id)

inline void append(const PointView (page 637) &buf)

inline PointViewPtr makeNew() const
Return a new point view with the same point table as this point buffer.

inline PointRef point(PointId id)

template<class T>
inline T (page 638) getFieldAs(Dimension (page 617)::Id dim, PointId pointIndex)

const

inline void getField(char *pos, Dimension (page 617)::Id d, Dimension
(page 617)::Type (page 617) type, PointId id) const

template<typename T>
void setField(Dimension (page 617)::Id dim, PointId idx, T (page 638) val)

inline void setField(Dimension (page 617)::Id dim, Dimension (page 617)::Type
(page 617) type, PointId idx, const void *val)

template<typename T>
inline virtual bool compare(Dimension (page 617)::Id dim, PointId id1, PointId id2)

const

638 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline virtual bool compare(Dimension (page 617)::Id dim, PointId id1, PointId id2)
const

void calculateBounds(BOX2D (page 607) &box) const

void calculateBounds(BOX3D (page 611) &box) const

void dump(std::ostream &ostr) const

inline bool hasDim(Dimension (page 617)::Id id) const

inline std::string dimName(Dimension (page 617)::Id id) const

inline Dimension (page 617)::IdList dims() const

inline std::size_t pointSize() const

inline std::size_t dimSize(Dimension (page 617)::Id id) const

inline Dimension (page 617)::Type (page 617) dimType(Dimension (page 617)::Id id)
const

inline DimTypeList dimTypes() const

inline virtual PointLayoutPtr layout() const

inline PointTableRef table() const

inline SpatialReference spatialReference() const

inline void getPackedPoint(const DimTypeList &dims, PointId idx, char *buf) const
Fill a buffer with point data specified by the dimension list.

Parameters

• dims – [in] List of dimensions/types to retrieve.

• idx – [in] Index of point to get.

• buf – [in] Pointer to buffer to fill.

inline void setPackedPoint(const DimTypeList &dims, PointId idx, const char *buf)
Load the point buffer from memory whose arrangement is specified by the
dimension list.

Parameters

• dims – [in] Dimension/types of data in packed order

• idx – [in] Index of point to write.

• buf – [in] Packed data buffer.

14.3. API 639

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline char *getPoint(PointId id)
Provides access to the memory storing the point data.

Though this function is public, other access methods are safer and preferred.

inline char *getOrAddPoint(PointId id)
Provides access to the memory storing the point data.

Though this function is public, other access methods are safer and preferred.

inline void clearTemps()

MetadataNode (page 634) toMetadata() const

void invalidateProducts()

TriangularMesh *createMesh(const std::string &name)
Creates a mesh with the specified name.

Parameters
name – Name of the mesh.

Returns
Pointer to the new mesh. Null is returned if the mesh already exists.

TriangularMesh *mesh(const std::string &name = "")
Get a pointer to a mesh.

Parameters
name – Name of the mesh.

Returns
New mesh. Null is returned if the mesh already exists.

Rasterd *createRaster(const std::string &name, const RasterLimits &limits, double
noData = 0)

Creates a raster with the specified name.

Parameters

• name – Name of the raster.

• limits – Limits of the raster to create.

Returns
Pointer to the new raster. Null is returned if the raster already exists.

Rasterd *raster(const std::string &name = "")
Get a pointer to a raster.

Parameters
name – Name of the raster.

640 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
Pointer to the New raster. Null

KD3Index &build3dIndex()

KD2Index &build2dIndex()

template<typename Compare>
inline void stableSort(Compare (page 641) compare)

Friends

friend class plang::Invocation

pdal::ProgramArgs

class ProgramArgs
Parses command lines, provides validation and stores found values in bound variables.

Add arguments with add (page 641). When all arguments have been added, use parse
(page 644) to validate command line and assign values to variables bound with add
(page 641).

Public Functions

inline Arg &add(const std::string &name, const std::string description, std::string &var,
std::string def)

Add a string argument to the list of arguments.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

• var – Reference to variable to bind to argument.

• def – Default value of argument.

Returns
Reference to the new argument.

14.3. API 641

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline Arg &add(const std::string &name, const std::string &description,
std::vector<std::string> &var)

Add a list-based (vector) string argument.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

• var – Reference to variable to bind to argument.

Returns
Reference to the new argument.

inline bool set(const std::string &name) const
Return whether the argument (as specified by it’s longname) had its value set during
parsing.

template<typename T>
inline Arg &add(const std::string &name, const std::string &description, std::vector<T

(page 642)> &var)
Add a list-based (vector) argument.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

• var – Reference to variable to bind to argument.

Returns
Reference to the new argument.

template<typename T>
inline Arg &add(const std::string &name, const std::string &description, std::vector<T

(page 642)> &var, std::vector<T (page 642)> def)
Add a list-based (vector) argument with a default.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

642 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• var – Reference to variable to bind to argument.

Returns
Reference to the new argument.

template<typename T>
inline Arg &add(const std::string &name, const std::string description, T (page 643)

&var, T (page 643) def)
Add an argument to the list of arguments with a default.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

• var – Reference to variable to bind to argument.

• def – Default value of argument.

Returns
Reference to the new argument.

template<typename T>
inline Arg &add(const std::string &name, const std::string description, T (page 643)

&var)
Add an argument to the list of arguments.

Parameters

• name – Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional
one-character abbreviation.

• description – Description of the argument.

• var – Reference to variable to bind to argument.

Returns
Reference to the new argument.

inline void parseSimple(std::vector<std::string> &s)
Parse a command line as specified by its argument vector.

No validation occurs and only argument value exceptions are raised, but
assignments are made to bound variables where possible.

Parameters
s – List of strings that constitute the argument list.

14.3. API 643

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void parse(const std::vector<std::string> &s)
Parse a command line as specified by its argument list.

Parsing validates the argument vector and assigns values to variables bound to
added arguments.

Parameters
s – List of strings that constitute the argument list.

inline void addSynonym(const std::string &name, const std::string &synonym)

Add a synonym for an argument.

Parameters

• name – Longname of existing arugment.

• synonym – Synonym for argument.

inline void reset()
Reset the state of all arguments and bound variables as if no parsing had occurred.

inline std::string commandLine() const
Return a string suitable for use in a “usage” line for display to users as help.

inline void dump(std::ostream &out, size_t indent, size_t totalWidth) const
Write a formatted description of arguments to an output stream.

Write a list of the names and descriptions of arguments suitable for display as help
information.

Parameters

• out – Stream to which output should be written.

• indent – Number of characters to indent all text.

• totalWidth – Total width to assume for formatting output.
Typically this is the width of a terminal window.

inline void dump2(std::ostream &out, size_t nameIndent, size_t descripIndent, size_t
totalWidth) const

Write a verbose description of arguments to an output stream.

Each argument is on its own line. The argument’s description follows on
subsequent lines.

Parameters

• out – Stream to which output should be written.

• nameIndent – Number of characters to indent argument lines.

• descripIndent – Number of characters to indent description lines.

644 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• totalWidth – Total line width.

inline void dump3(std::ostream &out) const
Write a JSON array of arguments to an output stream.

Parameters
out – Stream to which output should be written.

pdal::Reader

pdal::Reader (page 645) are classes that provided interfaces to various the various point
cloud formats and hands them off to a PDAL pipeline in a common format that is described via
the pdal::Schema.

class Reader : public virtual pdal::Stage (page 646)
Subclassed by pdal::ArrowReader, pdal::BpfReader, pdal::BufferReader,
pdal::CopcReader, pdal::DbReader, pdal::DracoReader, pdal::E57Reader,
pdal::EptReader, pdal::EsriReader, pdal::FauxReader, pdal::FbiReader,
pdal::GDALReader, pdal::HdfReader, pdal::IcebridgeReader, pdal::Ilvis2Reader,
pdal::LasReader, pdal::MatlabReader, pdal::MbReader, pdal::MemoryViewReader,
pdal::OSGReader, pdal::ObjReader, pdal::OptechReader, pdal::PcdReader,
pdal::PlyReader, pdal::PtsReader, pdal::PtxReader, pdal::QfitReader, pdal::RdbReader,
pdal::RxpReader, pdal::SbetReader, pdal::SmrmsgReader, pdal::StacReader,
pdal::TIndexReader, pdal::TerrasolidReader, pdal::TextReader, pdal::TileDBReader,
pdal::XYZTimeFauxReader

pdal::RowPointTable

class RowPointTable : public pdal::SimplePointTable

Public Functions

inline RowPointTable()

virtual ~RowPointTable()

inline virtual bool supportsView() const

14.3. API 645

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Stage

pdal::Stage (page 646) is the base class of pdal::Filter (page 628), pdal::Reader
(page 645), and pdal::MultiFilter classes that implement the reading API in a PDAL
pipeline.

class Stage
A stage performs the actual processing in PDAL.

Stages may read data, modify or filter read data, create metadata or write processed data.

Stages are linked with setInput() (page 646) into a pipeline. The pipeline is run with by
calling in sequence prepare() (page 647) and execute() (page 647) on the stage at the end
of the pipeline. PipelineManager can also be used to create and run a pipeline.

Subclassed by pdal::Filter (page 628), pdal::Reader (page 645), pdal::Streamable,
pdal::Writer (page 675)

Public Types

enum class WhereMergeMode
Values:

enumerator Auto

enumerator True

enumerator False

Public Functions

Stage()

virtual ~Stage()

inline void setInput(Stage (page 646) &input)
Add a stage to the input list of this stage.

Parameters
input – Stage (page 646) to use as input.

646 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void setProgressFd(int fd)
Set a file descriptor to which progress information should be written.

Parameters
fd – Progress file descriptor.

QuickInfo preview()
Retrieve some basic point information without reading all data when possible.

Usually implemented only by Readers.

void prepare(PointTableRef table)
Prepare a stage for execution.

This function needs to be called on the terminal stage of a pipeline (linked set of
stages) before execute (page 647) can be called. Prepare recurses through all input
stages.

Parameters
table – PointTable being used for stage pipeline.

PointViewSet execute(PointTableRef table)
Execute a prepared pipeline (linked set of stages).

This performs the action associated with the stage by executing the run function of
each stage in depth first order. Each stage is run to completion (all points are
processed) before the next stages is run.o

Parameters
table – Point table being used for stage pipeline. This must be the
same table used in the prepare (page 647) function.

inline virtual void execute(StreamPointTable &table)

inline virtual bool pipelineStreamable() const
Determine if a pipeline with this stage as a sink is streamable.

Returns
Whether the pipeline is streamable.

inline virtual const Stage (page 646) *findNonstreamable() const
Return a pointer to a pipeline’s first non-streamable stage, if one exists.

Returns
nullptr if the stage is streamable, a pointer to this stage otherwise.

void setSpatialReference(SpatialReference const &srs)
Set the spatial reference of a stage.

Set the spatial reference that will override that being carried by the PointView
(page 637) being processed. This is usually used when reprojecting data to a new

14.3. API 647

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

spatial reference. The stage spatial reference will be carried by PointViews
processes by this stage to subsequent stages.

If called by a Reader (page 645) whose spatial reference has been set with option
‘spatialreference’ or ‘override_srs’, then this function will have no effect.

Parameters
srs – Spatial reference to set.

const SpatialReference &getSpatialReference() const
Get the spatial reference of the stage.

Get the spatial reference that will override that being carried by the PointView
(page 637) being processed. This is usually used when reprojecting data to a new
spatial reference. The stage spatial reference will be carried by PointViews
processes by this stage to subsequent stages.

Returns
The stage’s spatial reference.

inline void setOptions(Options (page 636) options)
Set a stage’s options.

Set the options on a stage, clearing all previously set options.

Parameters
options – Options (page 636) to set.

void addConditionalOptions(const Options (page 636) &opts)
Add options if an option with the same name doesn’t already exist on the stage.

Parameters
opts – Options (page 636) to add.

void addAllArgs(ProgramArgs (page 641) &args)
Add a stage’s options to a ProgramArgs (page 641) set.

Parameters
args – ProgramArgs (page 641) to add to.

inline void addOptions(const Options (page 636) &opts)
Add options to the existing option set.

Parameters
opts – Options (page 636) to add.

inline void removeOptions(const Options (page 636) &opts)
Remove options from a stage’s option set.

Parameters
opts – Options (page 636) to remove.

648 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline void setLog(const LogPtr &log)
Set the stage’s log.

Parameters
log – Log (page 632) pointer.

inline virtual LogPtr log() const
Return the stage’s log pointer.

Returns
Log (page 632) pointer.

void startLogging() const
Push the stage’s leader into the log.

void stopLogging() const
Pop the stage’s leader from the log.

inline bool isDebug() const
Determine whether the stage is in debug mode or not.

Returns
The stage’s debug state.

virtual std::string getName() const = 0
Return the name of a stage.

Returns
The stage’s name.

inline void setTag(const std::string &tag)
Set a specific tag name.

inline virtual std::string tag() const
Return the tag name of a stage.

Returns
The tag name.

inline std::vector<Stage (page 646)*> &getInputs()
Return a list of the stage’s inputs.

Returns
A vector pointers to input stages.

inline MetadataNode (page 634) getMetadata() const
Get the stage’s metadata node.

Returns
Stage (page 646)’s metadata.

14.3. API 649

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

void serialize(MetadataNode (page 634) root, PipelineWriter::TagMap &tags) const
Serialize a stage by inserting apporpritate data into the provided MetadataNode
(page 634).

Used to dump a pipeline specification in a portable format.

Parameters

• root – Node to which a stages metadata should be added.

• tags – Pipeline writer’s current list of stage tags.

Public Static Functions

static bool parseName(std::string o, std::string::size_type &pos)
Parse a stage name from a string.

Return the name and update the position in the input string to the end of the stage
name.

Parameters

• o – Input string to parse.

• pos – Parsing start/end position.

Returns
Whether the parsed name is a valid stage name.

static bool parseTagName(std::string o, std::string::size_type &pos)
Parse a tag name from a string.

Return the name and update the position in the input string to the end of the tag
name.

Parameters

• o – Input string to parse.

• pos – Parsing start/end position.

• tag – Parsed tag name.

Returns
Whether the parsed name is a valid tag name.

650 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::StageFactory

class StageFactory
This class provides a mechanism for creating Stage (page 646) objects given a driver
name.

Creates stages are owned by the factory and destroyed when the factory is destroyed.
Stages can be explicitly destroyed with destroyStage() (page 651) if desired.

Note: Stage (page 646) creation is thread-safe.

Public Functions

StageFactory(bool ignored = true)
Create a stage factory.

Parameters
ignored – Ignored argument.

Stage (page 646) *createStage(const std::string &type)
Create a stage and return a pointer to the created stage.

The factory takes ownership of any successfully created stage.

Parameters
stage_name – Type of stage to by created.

Returns
Pointer to created stage.

void destroyStage(Stage (page 646) *stage)
Destroy a stage created by this factory.

This doesn’t need to be called unless you specifically want to destroy a stage as all
stages are destroyed when the factory is destroyed.

Parameters
stage – Pointer to stage to destroy.

14.3. API 651

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Static Functions

static std::string inferReaderDriver(const std::string &filename)
Infer the reader to use based on a filename.

Find the default reader for a file.

Parameters

• filename – Filename that should be analyzed to determine a driver.

• filename – Filename for which to infer a reader.

Returns
Driver name or empty string if no reader can be inferred from the
filename.

Returns
Name of the reader driver associated with the file.

static std::string inferWriterDriver(const std::string &filename)
Infer the writer to use based on filename extension.

Find the default writer for a file.

Parameters
filename – Filename for which to infer a writer.

Returns
Driver name or empty string if no writer can be inferred from the
filename.

Returns
Name of the writer driver associated with the file.

pdal::Utils

pdal::Utils is a set of utility functions.

namespace Utils

652 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Typedefs

using BacktraceEntries = std::deque<BacktraceEntry (page 673)>

using StringStreamClassicLocale = ClassicLocaleStream
(page 675)<std::stringstream>

Common used streams with classic locale.

using IStringStreamClassicLocale = ClassicLocaleStream
(page 675)<std::istringstream>

using OStringStreamClassicLocale = ClassicLocaleStream
(page 675)<std::ostringstream>

Functions

std::string toJSON(const MetadataNode (page 634) &m)

void toJSON(const MetadataNode (page 634) &m, std::ostream &o)

std::string tempFilename(const std::string &path)

uintmax_t fileSize(const std::string &path)

std::ostream *createFile(const std::string &path, bool asBinary)
Create a file (may be on a supported remote filesystem).

Parameters

• path – Path to file to create.

• asBinary – Whether the file should be written in binary mode.

Returns
Pointer to the created stream, or NULL.

bool isRemote(const std::string &path)
Open a file (potentially on a remote filesystem).

Parameters

• path – Path (potentially remote) of file to open.

• asBinary – Whether the file should be opened binary.

Returns
Pointer to stream opened for input.

14.3. API 653

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::string fetchRemote(const std::string &path)

std::istream *openFile(const std::string &path, bool asBinary)

void closeFile(std::ostream *out)
Close an output stream.

Parameters
out – Stream to close.

void closeFile(std::istream *in)
Close an input stream.

Parameters
out – Stream to close.

bool fileExists(const std::string &path)
Check to see if a file exists.

Parameters
path – Path to file.

Returns
Whether the file exists or not.

double computeHausdorff(PointViewPtr srcView, PointViewPtr candView)

std::pair<double, double> computeHausdorffPair(PointViewPtr viewA,
PointViewPtr viewB)

std::string dllDir()

double computeChamfer(PointViewPtr srcView, PointViewPtr candView)

inline void printError(const std::string &s)

inline double toDouble(const Everything &e, Dimension (page 617)::Type (page 617)
type)

template<typename INPUT>
inline Everything extractDim(INPUT (page 654) &ext, Dimension (page 617)::Type

(page 617) type)

template<typename OUTPUT>
inline void insertDim(OUTPUT (page 654) &ins, Dimension (page 617)::Type

(page 617) type, const Everything &e)

inline MetadataNode (page 634) toMetadata(const BOX2D (page 607) &bounds)

inline MetadataNode (page 634) toMetadata(const BOX3D (page 611) &bounds)

654 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline int openProgress(const std::string &filename)

inline void closeProgress(int fd)

inline void writeProgress(int fd, const std::string &type, const std::string &text)

std::vector<std::string> maybeGlob(const std::string &path)

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, Eigen::MatrixXd

&matrix)

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, SrsBounds

&srsBounds)

template<typename CONTAINER, typename VALUE>
bool contains(const CONTAINER (page 655) &cont, const VALUE (page 655) &val)

Determine if a container contains a value.

Parameters

• cont – Container.

• val – Value.

Returns
true if the value is in the container, false otherwise.

template<typename KEY, typename VALUE>
bool contains(const std::map<KEY (page 655), VALUE (page 655)> &c, const KEY

(page 655) &v)
Determine if a map contains a key.

Parameters

• c – Map.

• v – Key value.

Returns
true if the value is in the container, false otherwise.

template<typename CONTAINER, typename VALUE>
void remove(CONTAINER (page 655) &cont, const VALUE (page 655) &val)

Remove all instances of a value from a container.

Parameters

• cont – Container.

• v – Value to remove.

14.3. API 655

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

template<typename CONTAINER, typename PREDICATE>
void remove_if(CONTAINER (page 655) &cont, PREDICATE (page 655) p)

Remove all instances matching a unary predicate from a container.

Parameters

• cont – Container.

• p – Predicate indicating whether a value should be removed.

std::vector<std::string> backtrace()
Generate a backtrace as a list of strings.

Returns
List of functions at the point of the call.

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, BOX2D

(page 607) &bounds)

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, BOX3D

(page 611) &bounds)

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, Bounds

&bounds)

BacktraceEntries (page 653) backtraceImpl()

template<class T>
const T (page 656) &clamp(const T (page 656) &t, const T (page 656) &minimum,

const T (page 656) &maximum)

Clamp value to given bounds.

Clamps the input value t to bounds specified by min and max. Used to ensure that
row and column indices remain within valid bounds.

Parameters

• t – the input value.

• min – the lower bound.

• max – the upper bound.

Returns
the value to clamped to the given bounds.

void random_seed(unsigned int seed)
Set a seed for random number generation.

656 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters
seed – Seed value.

double random(double minimum, double maximum)

Generate a random value in the range [minimum, maximum].

Parameters

• minimum – Lower value of range for random number generation.

• maximum – Upper value of range for random number generation.

inline bool compare_approx(double v1, double v2, double tolerance)
Determine if two values are within a particular range of each other.

Parameters

• v1 – First value to compare.

• v2 – Second value to compare.

• tolerance – Maximum difference between v1 and v2

inline double sround(double r)
Round double value to nearest integral value.

Parameters
r – Value to round

Returns
Rounded value

inline std::string tolower(const std::string &s)
Convert a string to lowercase.

Returns
Converted string.

inline std::string toupper(const std::string &s)
Convert a string to uppercase.

Returns
Converted string.

inline bool iequals(const std::string &s, const std::string &s2)
Compare strings in a case-insensitive manner.

Parameters

• s – First string to compare.

• s2 – Second string to compare.

14.3. API 657

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
Whether the strings are equal.

inline bool startsWith(const std::string &s, const std::string &prefix)
Determine if a string starts with a particular prefix.

Parameters

• s – String to check for prefix.

• prefix – Prefix to search for.

Returns
Whether the string begins with the prefix.

inline bool endsWith(const std::string &s, const std::string &postfix)
Determine if a string ends with a particular postfix.

Parameters

• s – String to check for postfix.

• postfix – Postfix to search for.

Returns
Whether the string ends with the postfix.

inline int cksum(char *buf, size_t size)
Generate a checksum that is the integer sum of the values of the bytes in a buffer.

Parameters

• buf – Pointer to buffer.

• size – Size of buffer.

Returns
Generated checksum.

int getenv(std::string const &name, std::string &val)
Fetch the value of an environment variable.

Parameters

• name – Name of environment variable.

• name – Value of the environment variable if it exists, empty
otherwise.

Returns
0 on success, -1 on failure

int setenv(const std::string &env, const std::string &val)
Set the value of an environment variable.

658 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Parameters

• env – Name of environment variable.

• val – Value of environment variable.

Returns
0 on success, -1 on failure

int unsetenv(const std::string &env)
Clear the value of an environment variable.

Parameters
env – Name of the environment variable to clear.

Returns
0 on success, -1 on failure

void eatwhitespace(std::istream &s)
Skip stream input until a non-space character is found.

Parameters
s – Stream to process.

void trimLeading(std::string &s)
Remove whitespace from the beginning of a string.

Parameters
s – String to be trimmed.

void trimTrailing(std::string &s)
Remove whitespace from the end of a string.

Parameters
s – String to be trimmed.

inline void trim(std::string &s)
Remove whitespace from the beginning and end of a string.

Parameters
s – String to be trimmed.

bool eatcharacter(std::istream &s, char x)
If specified character is at the current stream position, advance the stream position
by 1.

Parameters

• s – Stream to insect.

• x – Character to check for.

14.3. API 659

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
true if the character is at the current stream position, false
otherwise.

std::string base64_encode(const unsigned char *buf, size_t size)
Convert a buffer to a string using base64 encoding.

Parameters

• buf – Pointer to buffer to encode.

• size – Size of buffer.

Returns
Encoded buffer.

inline std::string base64_encode(std::vector<uint8_t> const &bytes)
Convert a buffer to a string using base64 encoding.

Parameters
bytes – Pointer to buffer to encode.

Returns
Encoded buffer.

std::vector<uint8_t> base64_decode(std::string const &input)
Decode a base64-encoded string into a buffer.

Parameters
input – String to decode.

Returns
Buffer containing decoded string.

FILE *portable_popen(const std::string &command, const std::string &mode)
Start a process to run a command and open a pipe to which input can be written and
from which output can be read.

Parameters
command – Command to run in subprocess. \mode Either ‘r’, ‘w’ or
‘r+’ to specify if the pipe should be opened as read-only, write-only or
read-write.

Returns
Pointer to FILE for input/output from the subprocess.

int portable_pclose(FILE *fp)
Close file opened with portable_popen (page 660).

Parameters
fp – Pointer to file to close.

660 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
0 on success, -1 on failure.

int run_shell_command(const std::string &cmd, std::string &output)
Create a subprocess and set the standard output of the command into the provided
output string.

Parameters

• cmd – Command to run.

• output – String to which output from the command should be
written,

std::string replaceAll(std::string input, const std::string &replaceWhat, const
std::string &replaceWithWhat)

Replace all instances of one string found in the input with another value.

Parameters

• input – Input string to modify.

• replaceWhat – Token to locate in input string.

• replaceWithWhat – Replacement for found tokens.

Returns
Modified version of input string.

std::vector<std::string> wordWrap(std::string const &inputString, size_t lineLength,
size_t firstLength = 0)

Break a string into a list of strings to not exceed a specified length.

Whitespace is condensed to a single space and each string is free of whitespace at
the beginning and end when possible. Optionally, a line length for the first line can
be different from subsequent lines.

Parameters

• inputString – String to split into substrings.

• lineLength – Maximum length of substrings.

• firstLength – When non-zero, the maximum length of the first
substring. When zero, the first firstLength is assigned the value
provided in lineLength.

Returns
List of substrings generated from the input string.

std::vector<std::string> wordWrap2(std::string const &inputString, size_t lineLength,
size_t firstLength = 0)

14.3. API 661

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Break a string into a list of strings to not exceed a specified length.

The concatanation of the returned substrings will yield the original string. The
algorithm attempts to break the original string such that each substring begins with
a word.

Parameters

• inputString – String to split into substrings.

• lineLength – Maximum length of substrings.

• firstLength – When non-zero, the maximum length of the first
substring. When zero, the first firstLength is assigned the value
provided in lineLength.

Returns
List of substrings generated from the input string.

std::string escapeJSON(const std::string &s)
Add escape characters or otherwise transform an input string so as to be a valid
JSON string.

Parameters
s – Input string.

Returns
Valid JSON version of input string.

std::string demangle(const std::string &s)
Demangle a C++ symbol into readable form.

Demangle strings using the compiler-provided demangle function.

Parameters

• s – String to demangle.

• s – [in] String to be demangled.

Returns
Demangled symbol.

Returns
Demangled string

int screenWidth()
Return the screen width of an associated tty.

Returns
The tty screen width or 80 if on Windows or it can’t be determined.

662 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::string escapeNonprinting(const std::string &s)
Escape non-printing characters by using standard notation (i.e.

) or hex notation (\x10) as as necessary.

Parameters
s – String to modify.

Returns
Copy of input string with non-printing characters converted to
printable notation.

double normalizeLongitude(double longitude)
Normalize longitude so that it’s between (-180, 180].

Parameters
longitude – Longitude to normalize.

Returns
Normalized longitude.

template<typename PREDICATE>
std::string::size_type extract(const std::string &s, std::string::size_type p,

PREDICATE (page 663) pred)
Count the number of characters in a string that meet a predicate.

Parameters

• s – String in which to start counting characters.

• p – Position in input string at which to start counting.

• pred – Unary predicate that tests a character.

Returns
Then number of characters matching the predicate.

inline std::string::size_type extractSpaces(const std::string &s, std::string::size_type
p)

Count the number of characters spaces in a string at a position.

Parameters

• s – String in which to start counting characters.

• p – Position in input string at which to start counting.

Returns
Then number of space-y characters matching the predicate.

template<typename PREDICATE>

14.3. API 663

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::vector<std::string> split(const std::string &s, PREDICATE (page 663) p)
Split a string into substrings based on a predicate.

Characters matching the predicate are discarded.

Parameters

• s – String to split.

• p – Unary predicate that returns true to indicate that a character is a
split location.

Returns
Substrings.

template<typename PREDICATE>
std::vector<std::string> split2(const std::string &s, PREDICATE (page 664) p)

Split a string into substrings.

Characters matching the predicate are discarded, as are empty strings otherwise
produced by split() (page 664).

Parameters

• s – String to split.

• p – Predicate returns true if a char in a string is a split location.

Returns
Vector of substrings.

inline std::vector<std::string> split(const std::string &s, char tChar)
Split a string into substrings based a splitting character.

The splitting characters are discarded.

Parameters

• s – String to split.

• p – Character indicating split positions.

Returns
Substrings.

inline std::vector<std::string> split2(const std::string &s, char tChar)
Split a string into substrings based a splitting character.

The splitting characters are discarded as are empty strings otherwise produced by
split() (page 664).

Parameters

• s – String to split.

664 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• p – Character indicating split positions.

Returns
Substrings.

std::vector<std::string> simpleWordexp(const std::string &s)
Perform shell-style word expansion (break a string into arguments).

This only does simple handling of quoted values and backslashes and doesn’t
support fancier shell behavior. Use the real wordexp() if you need all that. The
behavior of escaped values in a string was surprising to me, so try the shell first if
you think you’ve found a problem.

Parameters
s – Input string to parse.

Returns
List of arguments.

template<typename T>
std::string typeidName()

Return a string representation of a type specified by the template argument.

Returns
String representation of the type.

inline RedirectStream (page 674) redirect(std::ostream &out, std::ostream &dst)
Redirect a stream to some other stream, by default a null stream.

Parameters

• out – Stream to redirect.

• dst – Destination stream.

Returns
Context for stream restoration (see restore() (page 666)).

inline RedirectStream (page 674) redirect(std::ostream &out)
Redirect a stream to a null stream.

Parameters
out – Stream to redirect.

Returns
Context for stream restoration (see restore() (page 666)).

inline RedirectStream (page 674) redirect(std::ostream &out, const std::string &file)
Redirect a stream to some file.

Parameters

• out – Stream to redirect.

14.3. API 665

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• file – Name of file where stream should be redirected.

Returns
Context for stream restoration (see restore() (page 666)).

inline void restore(std::ostream &out, RedirectStream (page 674) &redir)
Restore a stream redirected with redirect() (page 665).

Parameters

• out – Stream to be restored.

• redir – RedirectStream (page 674) returned from corresponding
redirect() (page 665) call.

template<typename T_OUT>
bool inRange(double in)

Determine whether a double value may be safely converted to the given output type
without over/underflow.

If the output type is integral the input will be rounded before being tested.

Parameters
in – Value to range test.

Returns
Whether value can be safely converted to template type.

template<typename T_IN, typename T_OUT>
bool inRange(T_IN (page 666) in)

Determine whether a value may be safely converted to the given output type
without over/underflow.

If the output type is integral and different from the input time, the value will be
rounded before being tested.

Parameters
in – Value to range test.

Returns
Whether value can be safely converted to template type.

template<typename T_IN, typename T_OUT>
bool numericCast(T_IN (page 666) in, T_OUT (page 666) &out)

Convert a numeric value from one type to another.

Floating point values are rounded to the nearest integer before a conversion is
attempted.

Parameters

• in – Value to convert.

666 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• out – Converted value.

Returns
true if the conversion was successful, false if the datatypes/input
value don’t allow conversion.

template<>
inline bool numericCast(double in, float &out)

Convert a numeric value from double to float.

Specialization to handle NaN.

Parameters

• in – Value to convert.

• out – Converted value.

Returns
true if the conversion was successful, false if the datatypes/input
value don’t allow conversion.

template<typename T>
std::string toString(const T (page 667) &from)

Convert a value to its string representation by writing to a stringstream.

Parameters
from – Value to convert.

Returns
String representation.

inline std::string toString(bool from)

Convert a bool to a string.

inline std::string toString(double from, size_t precision = 10)
Convert a double to string with a precision of 10 decimal places.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(float from)

Convert a float to string with a precision of 10 decimal places.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

14.3. API 667

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

inline std::string toString(long long from)

Convert a long long int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(unsigned long from)

Convert an unsigned long long int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(long from)

Convert a long int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(unsigned int from)

Convert an unsigned int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(int from)

Convert an int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(unsigned short from)

Convert an unsigned short to string.

Parameters
from – Value to convert.

668 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns
String representation of numeric value.

inline std::string toString(short from)

Convert a short int to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(char from)

Convert a char (treated as numeric) to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(unsigned char from)

Convert an unsigned char (treated as numeric) to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

inline std::string toString(signed char from)

Convert a signed char (treated as numeric) to string.

Parameters
from – Value to convert.

Returns
String representation of numeric value.

template<typename T>
StatusWithReason (page 674) fromString(const std::string &from, T (page 669) *&to)

template<typename T, std::enable_if_t<!std::is_integral<T (page 669)>::value>* =
nullptr>
StatusWithReason (page 674) fromString(const std::string &from, T (page 669) &to)

Convert a string to a non-integral value by reading from a string stream.

Convert a string to an integral value by reading from a string stream.

Parameters

• from – String to convert.

14.3. API 669

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• to – Converted value.

Returns
true if the conversion was successful, false otherwise.

template<>
inline StatusWithReason (page 674) fromString(const std::string &from, std::string

&to)

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, char &to)

Convert a numeric string to a char numeric value.

\parm s String to convert.

Parameters
to – Converted numeric value.

Returns
true if the conversion was successful, false otherwise.

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, unsigned char

&to)
Convert a numeric string to an unsigned char numeric value.

\parm s String to convert.

Parameters
to – Converted numeric value.

Returns
true if the conversion was successful, false otherwise.

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, signed char &to)

Convert a numeric string to a signed char numeric value.

\parm s String to convert.

Parameters
to – Converted numeric value.

Returns
true if the conversion was successful, false otherwise.

template<>
inline StatusWithReason (page 674) fromString(const std::string &s, double &d)

Specialization conversion from string to double to handle Nan.

Parameters

670 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• s – String to be converted.

• d – Converted value.

Returns
true if the conversion was successful, false otherwise.

template<typename E>
std::underlying_type<E (page 671)>::type toNative(E (page 671) e)

Return the argument cast to its underlying type.

Typically used on an enum.

Parameters
e – Variable for which to find the underlying type.

Returns
Converted variable.

template<>
inline StatusWithReason (page 674) fromString(const std::string &from,

pdal::expr::AssignStatement &stmt)

template<>
inline StatusWithReason (page 674) fromString(const std::string &from,

pdal::expr::ConditionalExpression
&expr)

template<>
StatusWithReason (page 674) fromString(const std::string &from, SrsOrderSpec

&srsOrder)

template<>
std::string toString(const SrsOrderSpec &srsOrder)

template<size_t LEN>
inline StatusWithReason (page 674) fromString(const std::string &from,

StringHeaderVal<LEN (page 671)>
&h)

template<>
inline StatusWithReason (page 674) fromString(const std::string &from,

pdal::i3s::Obb &obb)

14.3. API 671

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Variables

const char dynamicLibExtension[] = ".so"

const char dirSeparator = '/'

const char pathListSeparator = ':'

class TempFile

Public Functions

inline TempFile(const std::string path)

inline virtual ~TempFile()

inline const std::string &filename()

class ArbiterOutStream : public std::ofstream

Public Functions

inline ArbiterOutStream(const std::string &localPath, const std::string
&remotePath, std::ios::openmode mode)

inline virtual ~ArbiterOutStream()

Public Members

std::string m_remotePath

TempFile (page 672) m_localFile

class ArbiterInStream : public std::ifstream

672 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Public Functions

inline ArbiterInStream(const std::string &localPath, const std::string
&remotePath, std::ios::openmode mode)

Public Members

TempFile (page 672) m_localFile

struct BacktraceEntry
#include <BacktraceImpl.hpp>

Public Functions

inline BacktraceEntry()

Public Members

std::string libname

void *addr

std::string symname

int offset

class Random
#include <Random.hpp>

Public Functions

Random()

Random(int32_t seed)

Random(const std::vector<int32_t> seed)

14.3. API 673

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Random(const std::string &seed)

std::mt19937 &generator()

Public Static Functions

static unsigned int quick()

class StatusWithReason
#include <Utils.hpp>

Public Functions

inline StatusWithReason()

inline StatusWithReason(bool ok)

StatusWithReason(int code) = delete

inline StatusWithReason(int code, const std::string &what)

inline int code() const

inline operator bool() const

inline std::string what() const

struct RedirectStream
#include <Utils.hpp>

Public Functions

inline RedirectStream()

Public Members

std::ofstream *m_out

std::streambuf *m_buf

674 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

std::unique_ptr<NullOStream> m_null

template<typename T>

struct ClassicLocaleStream : public T (page 675)
#include <Utils.hpp> Wrapper around a stream to be sure that uses classic locale.

Use it instead of a std::*stream on any stream that reads or writes numbers. It
prevents problems due to locale global changes done in the application that uses
PDAL.

Public Functions

template<typename ...Args>
inline ClassicLocaleStream(Args (page 675)&&... args)

pdal::Writer

class Writer : public virtual pdal::Stage (page 646)
A Writer (page 675) is a terminal stage for a PDAL pipeline.

It usually writes output to a file, but this isn’t a requirement. The class provides support
for some operations common for producing point output.

Subclassed by pdal::ArrowWriter, pdal::CopcWriter, pdal::DbWriter, pdal::DracoWriter,
pdal::E57Writer, pdal::FbiWriter, pdal::FlexWriter, pdal::GltfWriter, pdal::MatlabWriter,
pdal::NoFilenameWriter, pdal::PcdWriter, pdal::RasterWriter, pdal::SbetWriter,
pdal::TextWriter, pdal::TileDBWriter

14.3.2 libLAS C API to PDAL transition guide

Author
Vaclav Petras

Contact
wenzeslaus@gmail.com

Date
09/04/2015

This page shows how to port code using libLAS C API to PDAL API (which is C++). The new
code is not using full power of PDAL but it uses just what is necessary to read content of a LAS
file.

14.3. API 675

mailto:wenzeslaus@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Includes

libLAS include:

#include <liblas/capi/liblas.h>

For PDAL, in addition to PDAL headers, we also include standard headers which will be useful
later:

#include <memory>
#include <pdal/PointTable.hpp>
#include <pdal/PointView.hpp>
#include <pdal/LasReader.hpp>
#include <pdal/LasHeader.hpp>
#include <pdal/Options.hpp>

Initial steps

Opening the dataset in libLAS:

LASReaderH LAS_reader;
LASHeaderH LAS_header;
LASSRSH LAS_srs;
LAS_reader = LASReader_Create(in_opt->answer);
LAS_header = LASReader_GetHeader(LAS_reader);

The higher level of abstraction in PDAL requires a little bit more code for the initial steps:

pdal::Option las_opt("filename", in_opt->answer);
pdal::Options las_opts;
las_opts.add(las_opt);
pdal::PointTable table;
pdal::LasReader las_reader;
las_reader.setOptions(las_opts);
las_reader.prepare(table);
pdal::PointViewSet point_view_set = las_reader.execute(table);
pdal::PointViewPtr point_view = *point_view_set.begin();
pdal::Dimension::IdList dims = point_view->dims();
pdal::LasHeader las_header = las_reader.header();

The PDAL code is also different in the way that we read all the data right away while in libLAS
we just open the file. To make use of other readers supported by PDAL, see StageFactory
class.

The test if the file was loaded successfully, the test of the header pointer was used with libLAS:

676 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

if (LAS_header == NULL) {
/* fail */

}

In general, PDAL will throw a pdal_error exception in case something is wrong and it can’t
recover such in the case when the file can’t be opened. To handle the exceptional state by
yourself, you can wrap the code in try-catch block:

try {
/* actual code */

} catch {
/* fail in your own way */

}

Dataset properties

We assume we defined all the following variables as double.

The general properties from the LAS file are retrieved from the header in libLAS:

scale_x = LASHeader_GetScaleX(LAS_header);
scale_y = LASHeader_GetScaleY(LAS_header);
scale_z = LASHeader_GetScaleZ(LAS_header);

offset_x = LASHeader_GetOffsetX(LAS_header);
offset_y = LASHeader_GetOffsetY(LAS_header);
offset_z = LASHeader_GetOffsetZ(LAS_header);

xmin = LASHeader_GetMinX(LAS_header);
xmax = LASHeader_GetMaxX(LAS_header);
ymin = LASHeader_GetMinY(LAS_header);
ymax = LASHeader_GetMaxY(LAS_header);

And the same applies PDAL:

scale_x = las_header.scaleX();
scale_y = las_header.scaleY();
scale_z = las_header.scaleZ();

offset_x = las_header.offsetX();
offset_y = las_header.offsetY();
offset_z = las_header.offsetZ();

(continues on next page)

14.3. API 677

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(continued from previous page)
xmin = las_header.minX();
xmax = las_header.maxX();
ymin = las_header.minY();
ymax = las_header.maxY();

The point record count in libLAS:

unsigned int n_features = LASHeader_GetPointRecordsCount(LAS_header);

is just point count in PDAL:

unsigned int n_features = las_header.pointCount();

WKT of a spatial reference system is obtained from the header in libLAS:

LAS_srs = LASHeader_GetSRS(LAS_header);
char* projstr = LASSRS_GetWKT_CompoundOK(LAS_srs);

In PDAL, spatial reference is part of the PointTable:

char* projstr = table.spatialRef().
→˓getWKT(pdal::SpatialReference::eCompoundOK).c_str();

Whether the time or color is supported by the LAS format, one would have to determine from
the format ID in libLAS:

las_point_format = LASHeader_GetDataFormatId(LAS_header);
have_time = (las_point_format == 1 ...

In PDAL, there is a convenient function for it in the header:

have_time = las_header.hasTime();
have_color = las_header.hasColor();

The presence of color, time and other dimensions can be also determined with:

pdal::Dimension::IdList dims = point_view->dims();

678 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Iterating over points

libLAS:

while ((LAS_point = LASReader_GetNextPoint(LAS_reader)) != NULL) {
// ...

}

PDAL:

for (pdal::PointId idx = 0; idx < point_view->size(); ++idx) {
// ...

}

Point validity

The correct usage of libLAS required to test point validity:

LASPoint_IsValid(LAS_point)

In PDAL, there is no need to do that and the caller can assume that all the points provided by
PDAL are valid.

Coordinates

libLAS:

x = LASPoint_GetX(LAS_point);
y = LASPoint_GetY(LAS_point);
z = LASPoint_GetZ(LAS_point);

In PDAL, point coordinates are one of the dimensions:

using namespace pdal::Dimension;
x = point_view->getFieldAs<double>(Id::X, idx);
y = point_view->getFieldAs<double>(Id::Y, idx);
z = point_view->getFieldAs<double>(Id::Z, idx);

Thanks to using namespace pdal::Dimension we can just write Id::X etc.

14.3. API 679

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Returns

libLAS:

int return_no = LASPoint_GetReturnNumber(LAS_point);
int n_returns = LASPoint_GetNumberOfReturns(LAS_point);

PDAL:

int return_no = point_view->getFieldAs<int>(Id::ReturnNumber, idx);
int n_returns = point_view->getFieldAs<int>(Id::NumberOfReturns, idx);

Classes

libLAS:

int point_class = (int) LASPoint_GetClassification(LAS_point);

PDAL:

int point_class = point_view->getFieldAs<int>(Id::Classification, idx);

Color

libLAS:

LASColorH LAS_color = LASPoint_GetColor(LAS_point);
int red = LASColor_GetRed(LAS_color);
int green = LASColor_GetGreen(LAS_color);
int blue = LASColor_GetBlue(LAS_color);

PDAL:

int red = point_view->getFieldAs<int>(Id::Red, idx);
int green = point_view->getFieldAs<int>(Id::Green, idx);
int blue = point_view->getFieldAs<int>(Id::Blue, idx);

For LAS format, hasColor() method of LasHeader to see if the format supports RGB.
However, in general, you can test use hasDim(Id::Red), hasDim(Id::Green) and
hasDim(Id::Blue) method calls on the point, to see if the color was defined.

680 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

Time

libLAS:

double time = LASPoint_GetTime(LAS_point);

PDAL:

double time = point_view->getFieldAs<double>(Id::GpsTime, idx);

Other point attributes

libLAS:

LASPoint_GetIntensity(LAS_point)
LASPoint_GetScanDirection(LAS_point)
LASPoint_GetFlightLineEdge(LAS_point)
LASPoint_GetScanAngleRank(LAS_point)
LASPoint_GetPointSourceId(LAS_point)
LASPoint_GetUserData(LAS_point)

PDAL:

point_view->getFieldAs<int>(Id::Intensity, idx)
point_view->getFieldAs<int>(Id::ScanDirectionFlag, idx)
point_view->getFieldAs<int>(Id::EdgeOfFlightLine, idx)
point_view->getFieldAs<int>(Id::ScanAngleRank, idx)
point_view->getFieldAs<int>(Id::PointSourceId, idx)
point_view->getFieldAs<int>(Id::UserData, idx)

Memory management

In libLAS C API, we need to explicitly take care of freeing the memory:

LASSRS_Destroy(LAS_srs);
LASHeader_Destroy(LAS_header);
LASReader_Destroy(LAS_reader);

When using C++ and PDAL, the objects created on stack free the memory when they go out of
scope. When using smart pointers, they will take care of the memory they manage. This does
not apply to special cases such as exit() function calls.

14.3. API 681

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.4 FAQ

• Why do I get the error Couldn't create ... stage of type ...?

In almost all cases this error occurs because you’re trying to run a stage that is built as a
plugin and the plugin (a shared library file or DLL) can’t be found by pdal. You can
verify whether the plugin can be found by running pdal --drivers

If you’ve built pdal yourself, make sure you’ve requested to build the plugin in question
(set BUILD_PLUGIN_TILEDB=ON, for example, in CMakeCache.txt).

If you’ve successfully built the plugin, a shared object called

libpdal_plugin_<plugin type>_<plugin name>.<shared library␣
→˓extension>

should have been created that’s installed in a location where pdal can find it. pdal will
search the following paths for plugins: ., ./lib, ../lib, ./bin, ../bin.

You can also override the default search path by setting the environment variable
PDAL_DRIVER_PATH to a list of directories that pdal should search for plugins.

• I’m missing the python filter/numpy reader. Where is it?

If you’re building PDAL from source, you’ll find the python filter and numpy reader in a
separate repository, https://github.com/PDAL/python-plugins. If you’re using a package,
Python support may be in a separate package, often called “python-pdal”.

• Why do I get the error Unable to convert scaled value ...

This error usually occurs when writing LAS files, but can occur with other formats.

Simply, the output format you’ve chosen doesn’t support values as large (or small) as
those that you’re trying to write. For example. if the output format specifies 32-bit signed
integers, attempting to write a value larger than 2,147,483,647 will cause this error, as
2,147,483,647 is the largest 32-bit signed integer.

The LAS format always stores X, Y and Z values as 32-bit integers. You can specify a
scale factor to be applied to those values in order to change their magnitude, but their
precision is limited to 32 bits. If the value you’re attempting to write, when divided by
the scale factor you’ve specified, is larger than 2,147,483,647, you will get this error. For
example, if you attempt to write the value 6 with a scale factor of .000000001, you’ll get
this error, as 6 / .000000001 is 6,000,000,000, which is larger than the maximum integer
value.

• Why am I using 100GB of memory when trying to process a 10GB LAZ file?

682 Chapter 14. Development

https://github.com/PDAL/python-plugins

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

If you’re performing an operation that is using standard mode (page 58), PDAL will read
all points into memory at once. Compressed files, like LAZ, can decompress to much
larger sizes before PDAL can process the data. Furthermore, some operations (notably
DEM creation (page 156)) can use large amounts of additional memory during
processing before the output can be written. Depending on the operation, PDAL will
attempt operate in stream mode (page 58) to limit memory consumption when possible.
If you want to limit the dimensions loaded, you may be able to use the dims option that is
available with some PDAL commands.

• How do you pronounce PDAL?

The proper spelling of the project name is PDAL, in uppercase. It is pronounced to
rhyme with “GDAL”.

• What is PDAL?

PDAL is not a workflow engine for processing point cloud data. PDAL is a library for
making point cloud processing workflow engines.

• What is PDAL’s relationship to PCL?

PDAL is PCL’s data translation cousin. PDAL is focused on providing a declarative
pipeline syntax for orchestrating translation operations. PDAL also supports reading and
writing PCL PCD files using readers.pcd (page 105) and writers.pcd (page 174).

See also:

PCL (page 7) describes PDAL and PCL’s relationship.

• What is PDAL’s relationship to libLAS?

The idea behind libLAS was limited to LIDAR data and basic manipulation. libLAS was
also trying to be partially compatible with LASlib and LAStools. PDAL, on the other
hand, aims to be a ultimate library and a set of tools for manipulating and processing
point clouds and is easily extensible by its users. Howard Butler talked more about this
history in a GeoHipster interview (http://geohipster.com/2018/03/05/howard-butler-like-
good-song-open-source-software-chance-immortal/) in 2018.

• Are there any command line tools in PDAL similar to LAStools?

Yes. The pdal (page 27) command provides a wide range of features which go far beyond
basic LIDAR data processing. Additionally, PDAL is licensed under an open source
license (this applies to the whole library and all command line tools).

14.4. FAQ 683

http://geohipster.com/2018/03/05/howard-butler-like-good-song-open-source-software-chance-immortal/

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

See also:

Applications (page 27) describes application operations you can achieve with PDAL.

• Is there any compatibility with libLAS’s LAS Utility Applications or LAStools?

No. The the command line interface was developed from scratch with focus on usability
and readability. You will find that the pdal command has several well-organized
subcommands such as info or translate (see Applications (page 27)).

• I get GeoTIFF errors. What can I do about them?

(readers.las Error) Geotiff directory contains key 0 with short␣
→˓entry
and more than one value.

If readers.las (page 89) is emitting error messages about GeoTIFF, this means the keys
that were written into your file were incorrect or at least not readable by libgeotiff
(https://trac.osgeo.org/geotif). Rewrite the file using PDAL to fix the issue:

pdal translate badfile.las goodfile.las --writers.las.forward=all

14.5 License

Unless otherwise indicated, all files in the PDAL distribution are

Copyright (c) 2022, Hobu, Inc. (howard@hobu.co)

and are released under the terms of the BSD open source license.

This file contains the license terms of all files within PDAL.

14.5.1 Overall PDAL license (BSD)

Copyright (c) 2022, Hobu, Inc. (howard@hobu.co)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

684 Chapter 14. Development

https://trac.osgeo.org/geotif
mailto:howard@hobu.co
mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of Hobu, Inc. or Flaxen Consulting LLC nor the names of
its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

14.6 References

14.6.1 Citation

To cite PDAL in publications use:

PDAL Contributors, 2022. PDAL Point Data Abstraction Library.
https://doi.org/10.5281/zenodo.2616780

A BibTeX entry for LaTeX users is

@misc{pdal_contributors_2022_2616780,
author = {PDAL Contributors},
title = {PDAL Point Data Abstraction Library},
month = aug,
year = 2022,
doi = {10.5281/zenodo.2616780},
url = {https://doi.org/10.5281/zenodo.2616780}

}

A paper about PDAL by the team, “PDAL: An open source library for the processing and
analysis of point clouds”, is available at [Butler2021].

14.6. References 685

https://doi.org/10.5281/zenodo.2616780
https://doi.org/10.5281/zenodo.2616780

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

14.6.2 Reference

686 Chapter 14. Development

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• search

687

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

688 Chapter 15. Indices and tables

BIBLIOGRAPHY

[GM19] D. Gatziolis and R. J. McGaughey. Reconstructing aircraft trajectories from
multi-return airborne laser-scanning data. Remote Sensing, 2019.

[LLW+19] Xuechen Li, Yinlong Liu, Yiru Wang, Chen Wang, Manning Wang, and Zhijian
Song. Fast and Globally Optimal Rigid Registration of 3D Point Sets by
Transformation Decomposition. unknown, 2019. Available at
https://arxiv.org/pdf/1812.11307.pdf.

[MS10] Andriy Myronenko and Xubo Song. Point set registration: coherent point drift.
IEEE transactions on pattern analysis and machine intelligence, 32(12):2262–75,
dec 2010.

[YG88] Alan L. Yuille and Norberto M. Grzywacz. The Motion Coherence Theory. Second
International Conference on Computer Vision, 1988.

[Gle07] Craig L. Glennie. Rigorous 3D error analysis of kinematic scanning LIDAR
systems. Journal of Applied Geodesy, jan 2007.

[Bartels2010] Bartels, Marc, and Hong Wei. “Threshold-free object and ground point
separation in LIDAR data.” Pattern recognition letters 31.10 (2010): 1089-1099.

[Breunig2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J., 2000. LOF: Identifying
Density-Based Local Outliers. Proc. 2000 Acm Sigmod Int. Conf. Manag. Data
1–12.

[Butler2021] Butler, H. Chambers, B. Hartzell, P. Glennie, C. PDAL: An open source library
for the processing and analysis of point clouds. Computers & Geosciences,
Volume 148, 2021, 104680, ISSN 0098-3004,
https://doi.org/10.1016/j.cageo.2020.104680.

[Chen2012] Chen, Ziyue et al. “Upward-Fusion Urban DTM Generating Method Using
Airborne Lidar Data.” ISPRS Journal of Photogrammetry and Remote Sensing 72
(2012): 121–130.

[Cook1986] Cook, Robert L. “Stochastic sampling in computer graphics.” ACM Transactions
on Graphics (TOG) 5.1 (1986): 51-72.

689

https://arxiv.org/pdf/1812.11307.pdf
https://doi.org/10.1016/j.cageo.2020.104680

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[Demantke2011] Demantké J., Mallet C., David N., Vallet, B. “Dimensionality Based Scale
Selection in 3d LIDAR Point Clouds.” Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci, XXXVIII-5/W12, 97-102, 2011

[Dippe1985] Dippé, Mark AZ, and Erling Henry Wold. “Antialiasing through stochastic
sampling.” ACM Siggraph Computer Graphics 19.3 (1985): 69-78.

[Ester1996] Ester, Martin, et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise.” Kdd. Vol. 96. No. 34. 1996.

[Fischer2010] Fischer, Kaspar, Bernd Gärtner, and Martin Kutz. “Fast Smallest-Enclosing-Ball
Computation in High Dimensions.” 26473 (2010): 630–641. Web.

[Guinard2017] Guinard S., Landrieu L. “Weakly Supervised Segmented-Aided Classification
of Urban Scenes From 3D LIDAR Point Clouds.” Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci., XLII-1/W1, 151-157, 2017

[Kazhdan2006] Kazhdan, Michael, Matthew Bolitho, and Hugues Hoppe. “Poisson surface
reconstruction.” Proceedings of the fourth Eurographics symposium on Geometry
processing. Vol. 7. 2006.

[Li2012] Li, Wenkai, et al. “A new method for segmenting individual trees from the lidar
point cloud.” Photogrammetric Engineering & Remote Sensing 78.1 (2012):
75-84.

[Limberger2015] Limberger, Frederico A., and Manuel M. Oliveira. “Real-Time Detection of
Planar Regions in Unorganized Point Clouds.” Pattern Recognition 48.6 (2015):
2043–2053. Web.

[Lloyd1982] Lloyd, Stuart. “Least squares quantization in PCM.” IEEE transactions on
information theory 28.2 (1982): 129-137.

[McCool1992] McCool, Michael, and Eugene Fiume. “Hierarchical Poisson disk sampling
distributions.” Proceedings of the conference on Graphics interface. Vol. 92. 1992.

[Mesh2009] ALoopingIcon. “Meshing Point Clouds.” MESHLAB STUFF. n.p., 7 Sept. 2009.
Web. 13 Nov. 2015.

[Pingel2013] Pingel, Thomas J., Keith C. Clarke, and William A. McBride. “An Improved
Simple Morphological Filter for the Terrain Classification of Airborne LIDAR
Data.” ISPRS Journal of Photogrammetry and Remote Sensing 77 (2013): 21–30.

[Rusu2008] Rusu, Radu Bogdan, et al. “Towards 3D point cloud based object maps for
household environments.” Robotics and Autonomous Systems 56.11 (2008):
927-941.

[Weyrich2004] Weyrich, T et al. “Post-Processing of Scanned 3D Surface Data.” Proceedings
of Eurographics Symposium on Point-Based Graphics 2004 (2004): 85–94. Print.

[Yang2020] Yang, Heng, Jingnan Shi, and Luca Carlone, “TEASER: Fast and Certifiable Point
Cloud Registraton,” arXiv preprint, arXiv:2001.07715, 2020.

690 Bibliography

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

[Zhang2003] Zhang, Keqi, et al. “A progressive morphological filter for removing nonground
measurements from airborne LIDAR data.” Geoscience and Remote Sensing,
IEEE Transactions on 41.4 (2003): 872-882.

[Zhang2016] Zhang, Wuming, et al. “An easy-to-use airborne LiDAR data filtering method
based on cloth simulation.” Remote Sensing 8.6 (2016): 501.

Bibliography 691

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

692 Bibliography

INDEX

A
Apps, 11

B
Bindings, 379
boundary, 460

C
capstone, 521
Citation, 685
classification, 487, 497, 501
classifications, 475
Clipping, 462
CloudCompare, 8
Colorization, 469
Command line, 11
Compile, 383
Conda, 19, 377, 438
coordinate system, 446
csd, 515
CSV, 446

D
Denoising, 473
Density, 477
density, 483
DSM, 490
DTM, 490

E
elevation model, 490
Embed, 375
Entwine, 8
EPT, 457
Extension, 376

F
filtering, 487, 497
Fusion, 8

G
GDAL, 469
georeferencing, 434, 515
GNSS/IMU, 434, 515
ground, 487, 497

H
hexagon tessellation, 477
histogram, 515

I
info command, 444
Install, 377, 382
installation, 444
intensity, 501

J
Java, 379, 382, 383
JNI, 379
JSON, 446
Julia, 12

L
LAStools, 7
libLAS, 8

M
matplotlib, 515
metadata, 446

N
nearby, 450

693

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

nearest, 450
Numpy, 12, 375, 515

O
OGR, 460, 462, 477
Optech, 515
OrfeoToolbox, 8
outliers, 473

P
PCL, 7
pdal::BOX2D (C++ class), 607
pdal::BOX2D::BOX2D (C++ function), 607
pdal::BOX2D::clear (C++ function), 607
pdal::BOX2D::clip (C++ function), 609
pdal::BOX2D::contains (C++ function),

608, 609
pdal::BOX2D::empty (C++ function), 607
pdal::BOX2D::equal (C++ function), 608
pdal::BOX2D::error (C++ struct), 611
pdal::BOX2D::error::error (C++

function), 611
pdal::BOX2D::getDefaultSpatialExtent

(C++ function), 611
pdal::BOX2D::grow (C++ function), 607,

608
pdal::BOX2D::maxx (C++ member), 610
pdal::BOX2D::maxy (C++ member), 610
pdal::BOX2D::minx (C++ member), 610
pdal::BOX2D::miny (C++ member), 610
pdal::BOX2D::operator!= (C++

function), 608
pdal::BOX2D::operator== (C++

function), 608
pdal::BOX2D::overlaps (C++ function),

609
pdal::BOX2D::parse (C++ function), 610
pdal::BOX2D::toBox (C++ function), 609
pdal::BOX2D::toGeoJSON (C++ function),

609
pdal::BOX2D::toWKT (C++ function), 609
pdal::BOX2D::valid (C++ function), 607
pdal::BOX2D::wkt (C++ member), 610
pdal::BOX3D (C++ class), 611
pdal::BOX3D::BOX3D (C++ function), 611

pdal::BOX3D::clear (C++ function), 612
pdal::BOX3D::clip (C++ function), 613
pdal::BOX3D::contains (C++ function),

612
pdal::BOX3D::empty (C++ function), 611
pdal::BOX3D::equal (C++ function), 613
pdal::BOX3D::error (C++ struct), 615
pdal::BOX3D::error::error (C++

function), 616
pdal::BOX3D::getDefaultSpatialExtent

(C++ function), 615
pdal::BOX3D::grow (C++ function), 612,

613
pdal::BOX3D::maxx (C++ member), 615
pdal::BOX3D::maxy (C++ member), 615
pdal::BOX3D::maxz (C++ member), 615
pdal::BOX3D::minx (C++ member), 615
pdal::BOX3D::miny (C++ member), 615
pdal::BOX3D::minz (C++ member), 615
pdal::BOX3D::operator!= (C++

function), 613
pdal::BOX3D::operator= (C++ function),

611
pdal::BOX3D::operator== (C++

function), 613
pdal::BOX3D::overlaps (C++ function),

614
pdal::BOX3D::parse (C++ function), 614
pdal::BOX3D::to2d (C++ function), 614
pdal::BOX3D::toBox (C++ function), 614
pdal::BOX3D::toWKT (C++ function), 614
pdal::BOX3D::valid (C++ function), 612
pdal::BOX3D::wkt (C++ member), 615
pdal::Charbuf (C++ class), 616
pdal::Charbuf::Charbuf (C++ function),

616
pdal::Charbuf::initialize (C++

function), 616
pdal::ColumnPointTable (C++ class),

617
pdal::ColumnPointTable::~ColumnPointTable

(C++ function), 617
pdal::ColumnPointTable::ColumnPointTable

(C++ function), 617
pdal::ColumnPointTable::finalize

694 Index

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(C++ function), 617
pdal::ColumnPointTable::getPoint

(C++ function), 617
pdal::ColumnPointTable::supportsView

(C++ function), 617
pdal::Dimension (C++ type), 617
pdal::Dimension::base (C++ function),

618
pdal::Dimension::BaseType (C++

enum), 617
pdal::Dimension::BaseType::Floating

(C++ enumerator), 617
pdal::Dimension::BaseType::None

(C++ enumerator), 617
pdal::Dimension::BaseType::Signed

(C++ enumerator), 617
pdal::Dimension::BaseType::Unsigned

(C++ enumerator), 617
pdal::Dimension::COUNT (C++ member),

619
pdal::Dimension::Detail (C++ class),

619
pdal::Dimension::DetailList (C++

type), 617
pdal::Dimension::extractName (C++

function), 619
pdal::Dimension::fixName (C++

function), 619
pdal::Dimension::fromName (C++

function), 618
pdal::Dimension::interpretationName

(C++ function), 618
pdal::Dimension::nameValid (C++

function), 619
pdal::Dimension::operator>> (C++

function), 619
pdal::Dimension::operator<< (C++

function), 619
pdal::Dimension::PROPRIETARY (C++

member), 619
pdal::Dimension::size (C++ function),

618
pdal::Dimension::toName (C++

function), 618
pdal::Dimension::Type (C++ enum), 617

pdal::Dimension::type (C++ function),
619

pdal::Dimension::Type::Double (C++
enumerator), 618

pdal::Dimension::Type::Float (C++
enumerator), 618

pdal::Dimension::Type::None (C++
enumerator), 618

pdal::Dimension::Type::Signed16
(C++ enumerator), 618

pdal::Dimension::Type::Signed32
(C++ enumerator), 618

pdal::Dimension::Type::Signed64
(C++ enumerator), 618

pdal::Dimension::Type::Signed8 (C++
enumerator), 618

pdal::Dimension::Type::Unsigned16
(C++ enumerator), 618

pdal::Dimension::Type::Unsigned32
(C++ enumerator), 618

pdal::Dimension::Type::Unsigned64
(C++ enumerator), 618

pdal::Dimension::Type::Unsigned8
(C++ enumerator), 618

pdal::Extractor (C++ class), 620
pdal::Extractor::Extractor (C++

function), 620
pdal::Extractor::get (C++ function),

620, 621
pdal::Extractor::good (C++ function),

620
pdal::Extractor::operator bool (C++

function), 620
pdal::Extractor::operator>> (C++

function), 621, 622
pdal::Extractor::position (C++

function), 620
pdal::Extractor::seek (C++ function),

620
pdal::Extractor::skip (C++ function),

620
pdal::FileUtils (C++ type), 622
pdal::FileUtils::closeFile (C++

function), 624
pdal::FileUtils::createDirectories

Index 695

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

(C++ function), 623
pdal::FileUtils::createDirectory

(C++ function), 623
pdal::FileUtils::createFile (C++

function), 622
pdal::FileUtils::deleteDirectory

(C++ function), 623
pdal::FileUtils::deleteFile (C++

function), 624
pdal::FileUtils::directoryExists

(C++ function), 623
pdal::FileUtils::directoryList (C++

function), 623
pdal::FileUtils::extension (C++

function), 627
pdal::FileUtils::fileExists (C++

function), 624
pdal::FileUtils::fileSize (C++

function), 624
pdal::FileUtils::fileTimes (C++

function), 626
pdal::FileUtils::fromNative (C++

function), 622
pdal::FileUtils::getcwd (C++

function), 625
pdal::FileUtils::getDirectory (C++

function), 626
pdal::FileUtils::getFilename (C++

function), 625
pdal::FileUtils::glob (C++ function),

627
pdal::FileUtils::isAbsolutePath

(C++ function), 626
pdal::FileUtils::isDirectory (C++

function), 626
pdal::FileUtils::MapContext (C++

struct), 627
pdal::FileUtils::mapFile (C++

function), 627
pdal::FileUtils::openExisting (C++

function), 622
pdal::FileUtils::openFile (C++

function), 622
pdal::FileUtils::readFileIntoString

(C++ function), 624

pdal::FileUtils::renameFile (C++
function), 624

pdal::FileUtils::stem (C++ function),
626

pdal::FileUtils::toAbsolutePath
(C++ function), 625

pdal::FileUtils::toCanonicalPath
(C++ function), 625

pdal::FileUtils::toNative (C++
function), 622

pdal::FileUtils::unmapFile (C++
function), 627

pdal::Filter (C++ class), 628
pdal::Filter::~Filter (C++ function),

628
pdal::Filter::Args (C++ struct), 628
pdal::Filter::Args::m_where (C++

member), 629
pdal::Filter::Args::m_whereArg (C++

member), 629
pdal::Filter::Args::m_whereMerge

(C++ member), 629
pdal::Filter::Args::m_whereMergeArg

(C++ member), 629
pdal::Filter::Filter (C++ function),

628
pdal::Filter::operator= (C++

function), 628
pdal::IStream (C++ class), 629
pdal::IStream::~IStream (C++

function), 629
pdal::IStream::close (C++ function),

630
pdal::IStream::get (C++ function), 631
pdal::IStream::good (C++ function), 630
pdal::IStream::IStream (C++ function),

629
pdal::IStream::open (C++ function), 629
pdal::IStream::operator bool (C++

function), 630
pdal::IStream::popStream (C++

function), 631
pdal::IStream::position (C++

function), 630
pdal::IStream::pushStream (C++

696 Index

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

function), 630
pdal::IStream::seek (C++ function), 630
pdal::IStream::skip (C++ function), 630
pdal::IStream::stream (C++ function),

630
pdal::Log (C++ class), 632
pdal::Log::~Log (C++ function), 632
pdal::Log::clearFloat (C++ function),

632
pdal::Log::floatPrecision (C++

function), 632
pdal::Log::get (C++ function), 632
pdal::Log::getLevel (C++ function), 632
pdal::Log::getLevelString (C++

function), 633
pdal::Log::getLogStream (C++

function), 632
pdal::Log::leader (C++ function), 633
pdal::Log::makeLog (C++ function), 633
pdal::Log::popLeader (C++ function),

633
pdal::Log::pushLeader (C++ function),

633
pdal::Log::setLeader (C++ function),

633
pdal::Log::setLevel (C++ function), 632
pdal::Metadata (C++ class), 633
pdal::Metadata::getNode (C++

function), 634
pdal::Metadata::inferType (C++

function), 634
pdal::Metadata::Metadata (C++

function), 634
pdal::MetadataNode (C++ class), 634
pdal::MetadataNode::add (C++

function), 634, 635
pdal::MetadataNode::addEncoded (C++

function), 634
pdal::MetadataNode::addList (C++

function), 634, 635
pdal::MetadataNode::addListEncoded

(C++ function), 634
pdal::MetadataNode::addOrUpdate

(C++ function), 635
pdal::MetadataNode::addWithType

(C++ function), 634
pdal::MetadataNode::childNames (C++

function), 635
pdal::MetadataNode::children (C++

function), 635
pdal::MetadataNode::clone (C++

function), 634
pdal::MetadataNode::description

(C++ function), 635
pdal::MetadataNode::empty (C++

function), 636
pdal::MetadataNode::find (C++

function), 636
pdal::MetadataNode::findChild (C++

function), 636
pdal::MetadataNode::findChildren

(C++ function), 636
pdal::MetadataNode::hasChildren

(C++ function), 635
pdal::MetadataNode::jsonValue (C++

function), 635
pdal::MetadataNode::kind (C++

function), 635
pdal::MetadataNode::MetadataNode

(C++ function), 634
pdal::MetadataNode::name (C++

function), 635
pdal::MetadataNode::operator bool

(C++ function), 636
pdal::MetadataNode::operator! (C++

function), 636
pdal::MetadataNode::type (C++

function), 635
pdal::MetadataNode::valid (C++

function), 636
pdal::MetadataNode::value (C++

function), 635
pdal::Options (C++ class), 636
pdal::Options::add (C++ function), 636,

637
pdal::Options::addConditional (C++

function), 636
pdal::Options::fromFile (C++

function), 637
pdal::Options::getKeys (C++ function),

Index 697

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

637
pdal::Options::getOptions (C++

function), 637
pdal::Options::getValues (C++

function), 637
pdal::Options::Options (C++ function),

636
pdal::Options::remove (C++ function),

636
pdal::Options::replace (C++ function),

636, 637
pdal::Options::toCommandLine (C++

function), 637
pdal::Options::toMetadata (C++

function), 636
pdal::PointView (C++ class), 637
pdal::PointView::~PointView (C++

function), 638
pdal::PointView::append (C++

function), 638
pdal::PointView::appendPoint (C++

function), 638
pdal::PointView::begin (C++ function),

638
pdal::PointView::build2dIndex (C++

function), 641
pdal::PointView::build3dIndex (C++

function), 641
pdal::PointView::calculateBounds

(C++ function), 639
pdal::PointView::clearTemps (C++

function), 640
pdal::PointView::compare (C++

function), 638
pdal::PointView::createMesh (C++

function), 640
pdal::PointView::createRaster (C++

function), 640
pdal::PointView::dimName (C++

function), 639
pdal::PointView::dims (C++ function),

639
pdal::PointView::dimSize (C++

function), 639
pdal::PointView::dimType (C++

function), 639
pdal::PointView::dimTypes (C++

function), 639
pdal::PointView::dump (C++ function),

639
pdal::PointView::empty (C++ function),

638
pdal::PointView::end (C++ function),

638
pdal::PointView::getField (C++

function), 638
pdal::PointView::getFieldAs (C++

function), 638
pdal::PointView::getOrAddPoint (C++

function), 640
pdal::PointView::getPackedPoint

(C++ function), 639
pdal::PointView::getPoint (C++

function), 639
pdal::PointView::hasDim (C++

function), 639
pdal::PointView::id (C++ function), 638
pdal::PointView::invalidateProducts

(C++ function), 640
pdal::PointView::layout (C++

function), 639
pdal::PointView::makeNew (C++

function), 638
pdal::PointView::mesh (C++ function),

640
pdal::PointView::operator= (C++

function), 638
pdal::PointView::point (C++ function),

638
pdal::PointView::pointSize (C++

function), 639
pdal::PointView::PointView (C++

function), 638
pdal::PointView::raster (C++

function), 640
pdal::PointView::setField (C++

function), 638
pdal::PointView::setPackedPoint

(C++ function), 639
pdal::PointView::size (C++ function),

698 Index

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

638
pdal::PointView::spatialReference

(C++ function), 639
pdal::PointView::stableSort (C++

function), 641
pdal::PointView::table (C++ function),

639
pdal::PointView::toMetadata (C++

function), 640
pdal::ProgramArgs (C++ class), 641
pdal::ProgramArgs::add (C++ function),

641–643
pdal::ProgramArgs::addSynonym (C++

function), 644
pdal::ProgramArgs::commandLine (C++

function), 644
pdal::ProgramArgs::dump (C++

function), 644
pdal::ProgramArgs::dump2 (C++

function), 644
pdal::ProgramArgs::dump3 (C++

function), 645
pdal::ProgramArgs::parse (C++

function), 643
pdal::ProgramArgs::parseSimple (C++

function), 643
pdal::ProgramArgs::reset (C++

function), 644
pdal::ProgramArgs::set (C++ function),

642
pdal::Reader (C++ class), 645
pdal::RowPointTable (C++ class), 645
pdal::RowPointTable::~RowPointTable

(C++ function), 645
pdal::RowPointTable::RowPointTable

(C++ function), 645
pdal::RowPointTable::supportsView

(C++ function), 645
pdal::Stage (C++ class), 646
pdal::Stage::~Stage (C++ function), 646
pdal::Stage::addAllArgs (C++

function), 648
pdal::Stage::addConditionalOptions

(C++ function), 648
pdal::Stage::addOptions (C++

function), 648
pdal::Stage::execute (C++ function),

647
pdal::Stage::findNonstreamable (C++

function), 647
pdal::Stage::getInputs (C++ function),

649
pdal::Stage::getMetadata (C++

function), 649
pdal::Stage::getName (C++ function),

649
pdal::Stage::getSpatialReference

(C++ function), 648
pdal::Stage::isDebug (C++ function),

649
pdal::Stage::log (C++ function), 649
pdal::Stage::parseName (C++ function),

650
pdal::Stage::parseTagName (C++

function), 650
pdal::Stage::pipelineStreamable

(C++ function), 647
pdal::Stage::prepare (C++ function),

647
pdal::Stage::preview (C++ function),

647
pdal::Stage::removeOptions (C++

function), 648
pdal::Stage::serialize (C++ function),

649
pdal::Stage::setInput (C++ function),

646
pdal::Stage::setLog (C++ function), 648
pdal::Stage::setOptions (C++

function), 648
pdal::Stage::setProgressFd (C++

function), 646
pdal::Stage::setSpatialReference

(C++ function), 647
pdal::Stage::setTag (C++ function), 649
pdal::Stage::Stage (C++ function), 646
pdal::Stage::startLogging (C++

function), 649
pdal::Stage::stopLogging (C++

function), 649

Index 699

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Stage::tag (C++ function), 649
pdal::Stage::WhereMergeMode (C++

enum), 646
pdal::Stage::WhereMergeMode::Auto

(C++ enumerator), 646
pdal::Stage::WhereMergeMode::False

(C++ enumerator), 646
pdal::Stage::WhereMergeMode::True

(C++ enumerator), 646
pdal::StageFactory (C++ class), 651
pdal::StageFactory::createStage

(C++ function), 651
pdal::StageFactory::destroyStage

(C++ function), 651
pdal::StageFactory::inferReaderDriver

(C++ function), 652
pdal::StageFactory::inferWriterDriver

(C++ function), 652
pdal::StageFactory::StageFactory

(C++ function), 651
pdal::Utils::pdal::Utils (C++ type),

652
pdal::Utils::pdal::Utils::ArbiterInStream

(C++ class), 672
pdal::Utils::pdal::Utils::ArbiterInStream::ArbiterInStream

(C++ function), 673
pdal::Utils::pdal::Utils::ArbiterInStream::m_localFile

(C++ member), 673
pdal::Utils::pdal::Utils::ArbiterOutStream

(C++ class), 672
pdal::Utils::pdal::Utils::ArbiterOutStream::~ArbiterOutStream

(C++ function), 672
pdal::Utils::pdal::Utils::ArbiterOutStream::ArbiterOutStream

(C++ function), 672
pdal::Utils::pdal::Utils::ArbiterOutStream::m_localFile

(C++ member), 672
pdal::Utils::pdal::Utils::ArbiterOutStream::m_remotePath

(C++ member), 672
pdal::Utils::pdal::Utils::backtrace

(C++ function), 656
pdal::Utils::pdal::Utils::BacktraceEntries

(C++ type), 653
pdal::Utils::pdal::Utils::BacktraceEntry

(C++ struct), 673
pdal::Utils::pdal::Utils::BacktraceEntry::addr

(C++ member), 673
pdal::Utils::pdal::Utils::BacktraceEntry::BacktraceEntry

(C++ function), 673
pdal::Utils::pdal::Utils::BacktraceEntry::libname

(C++ member), 673
pdal::Utils::pdal::Utils::BacktraceEntry::offset

(C++ member), 673
pdal::Utils::pdal::Utils::BacktraceEntry::symname

(C++ member), 673
pdal::Utils::pdal::Utils::backtraceImpl

(C++ function), 656
pdal::Utils::pdal::Utils::base64_decode

(C++ function), 660
pdal::Utils::pdal::Utils::base64_encode

(C++ function), 660
pdal::Utils::pdal::Utils::cksum

(C++ function), 658
pdal::Utils::pdal::Utils::clamp

(C++ function), 656
pdal::Utils::pdal::Utils::ClassicLocaleStream

(C++ struct), 675
pdal::Utils::pdal::Utils::ClassicLocaleStream::ClassicLocaleStream

(C++ function), 675
pdal::Utils::pdal::Utils::closeFile

(C++ function), 654
pdal::Utils::pdal::Utils::closeProgress

(C++ function), 655
pdal::Utils::pdal::Utils::compare_approx

(C++ function), 657
pdal::Utils::pdal::Utils::computeChamfer

(C++ function), 654
pdal::Utils::pdal::Utils::computeHausdorff

(C++ function), 654
pdal::Utils::pdal::Utils::computeHausdorffPair

(C++ function), 654
pdal::Utils::pdal::Utils::contains

(C++ function), 655
pdal::Utils::pdal::Utils::createFile

(C++ function), 653
pdal::Utils::pdal::Utils::demangle

(C++ function), 662
pdal::Utils::pdal::Utils::dirSeparator

(C++ member), 672
pdal::Utils::pdal::Utils::dllDir

(C++ function), 654

700 Index

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Utils::pdal::Utils::dynamicLibExtension
(C++ member), 672

pdal::Utils::pdal::Utils::eatcharacter
(C++ function), 659

pdal::Utils::pdal::Utils::eatwhitespace
(C++ function), 659

pdal::Utils::pdal::Utils::endsWith
(C++ function), 658

pdal::Utils::pdal::Utils::escapeJSON
(C++ function), 662

pdal::Utils::pdal::Utils::escapeNonprinting
(C++ function), 662

pdal::Utils::pdal::Utils::extract
(C++ function), 663

pdal::Utils::pdal::Utils::extractDim
(C++ function), 654

pdal::Utils::pdal::Utils::extractSpaces
(C++ function), 663

pdal::Utils::pdal::Utils::fetchRemote
(C++ function), 653

pdal::Utils::pdal::Utils::fileExists
(C++ function), 654

pdal::Utils::pdal::Utils::fileSize
(C++ function), 653

pdal::Utils::pdal::Utils::fromString
(C++ function), 655, 656, 669–671

pdal::Utils::pdal::Utils::getenv
(C++ function), 658

pdal::Utils::pdal::Utils::iequals
(C++ function), 657

pdal::Utils::pdal::Utils::inRange
(C++ function), 666

pdal::Utils::pdal::Utils::insertDim
(C++ function), 654

pdal::Utils::pdal::Utils::isRemote
(C++ function), 653

pdal::Utils::pdal::Utils::IStringStreamClassicLocale
(C++ type), 653

pdal::Utils::pdal::Utils::maybeGlob
(C++ function), 655

pdal::Utils::pdal::Utils::normalizeLongitude
(C++ function), 663

pdal::Utils::pdal::Utils::numericCast
(C++ function), 666, 667

pdal::Utils::pdal::Utils::openFile

(C++ function), 654
pdal::Utils::pdal::Utils::openProgress

(C++ function), 654
pdal::Utils::pdal::Utils::OStringStreamClassicLocale

(C++ type), 653
pdal::Utils::pdal::Utils::pathListSeparator

(C++ member), 672
pdal::Utils::pdal::Utils::portable_pclose

(C++ function), 660
pdal::Utils::pdal::Utils::portable_popen

(C++ function), 660
pdal::Utils::pdal::Utils::printError

(C++ function), 654
pdal::Utils::pdal::Utils::Random

(C++ class), 673
pdal::Utils::pdal::Utils::random

(C++ function), 657
pdal::Utils::pdal::Utils::Random::generator

(C++ function), 674
pdal::Utils::pdal::Utils::Random::quick

(C++ function), 674
pdal::Utils::pdal::Utils::Random::Random

(C++ function), 673
pdal::Utils::pdal::Utils::random_seed

(C++ function), 656
pdal::Utils::pdal::Utils::redirect

(C++ function), 665
pdal::Utils::pdal::Utils::RedirectStream

(C++ struct), 674
pdal::Utils::pdal::Utils::RedirectStream::m_buf

(C++ member), 674
pdal::Utils::pdal::Utils::RedirectStream::m_null

(C++ member), 674
pdal::Utils::pdal::Utils::RedirectStream::m_out

(C++ member), 674
pdal::Utils::pdal::Utils::RedirectStream::RedirectStream

(C++ function), 674
pdal::Utils::pdal::Utils::remove

(C++ function), 655
pdal::Utils::pdal::Utils::remove_if

(C++ function), 655
pdal::Utils::pdal::Utils::replaceAll

(C++ function), 661
pdal::Utils::pdal::Utils::restore

(C++ function), 666

Index 701

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

pdal::Utils::pdal::Utils::run_shell_command
(C++ function), 661

pdal::Utils::pdal::Utils::screenWidth
(C++ function), 662

pdal::Utils::pdal::Utils::setenv
(C++ function), 658

pdal::Utils::pdal::Utils::simpleWordexp
(C++ function), 665

pdal::Utils::pdal::Utils::split
(C++ function), 663, 664

pdal::Utils::pdal::Utils::split2
(C++ function), 664

pdal::Utils::pdal::Utils::sround
(C++ function), 657

pdal::Utils::pdal::Utils::startsWith
(C++ function), 658

pdal::Utils::pdal::Utils::StatusWithReason
(C++ class), 674

pdal::Utils::pdal::Utils::StatusWithReason::code
(C++ function), 674

pdal::Utils::pdal::Utils::StatusWithReason::operator
bool (C++ function), 674

pdal::Utils::pdal::Utils::StatusWithReason::StatusWithReason
(C++ function), 674

pdal::Utils::pdal::Utils::StatusWithReason::what
(C++ function), 674

pdal::Utils::pdal::Utils::StringStreamClassicLocale
(C++ type), 653

pdal::Utils::pdal::Utils::TempFile
(C++ class), 672

pdal::Utils::pdal::Utils::TempFile::~TempFile
(C++ function), 672

pdal::Utils::pdal::Utils::TempFile::filename
(C++ function), 672

pdal::Utils::pdal::Utils::TempFile::TempFile
(C++ function), 672

pdal::Utils::pdal::Utils::tempFilename
(C++ function), 653

pdal::Utils::pdal::Utils::toDouble
(C++ function), 654

pdal::Utils::pdal::Utils::toJSON
(C++ function), 653

pdal::Utils::pdal::Utils::tolower
(C++ function), 657

pdal::Utils::pdal::Utils::toMetadata

(C++ function), 654
pdal::Utils::pdal::Utils::toNative

(C++ function), 671
pdal::Utils::pdal::Utils::toString

(C++ function), 667–669, 671
pdal::Utils::pdal::Utils::toupper

(C++ function), 657
pdal::Utils::pdal::Utils::trim (C++

function), 659
pdal::Utils::pdal::Utils::trimLeading

(C++ function), 659
pdal::Utils::pdal::Utils::trimTrailing

(C++ function), 659
pdal::Utils::pdal::Utils::typeidName

(C++ function), 665
pdal::Utils::pdal::Utils::unsetenv

(C++ function), 659
pdal::Utils::pdal::Utils::wordWrap

(C++ function), 661
pdal::Utils::pdal::Utils::wordWrap2

(C++ function), 661
pdal::Utils::pdal::Utils::writeProgress

(C++ function), 655
pdal::Writer (C++ class), 675
pip, 377
poisson, 483
Potree, 457
project, 521
pronounce, 682
Python, 12, 375–377, 515

Q
QGIS, 440, 460
query, 450
Quickstart, 19

R
range filter, 475
Raster, 469
rasterization, 501
References, 686
Reprojection, 453
RGB, 469
RIEGL, 515

702 Index

PDAL: Point cloud Data Abstraction Library, Release 2.7.1

S
sample, 483
Scala, 379, 382, 383
search, 450
SOCS, 434
software installation, 438
Source, 377
spatial reference system, 446
Stage, 645
Start Here, 444

T
thinning, 483

U
Untwine, 8
Utils, 652
UTM, 453, 515

V
Vector, 462
voxel sampling, 483

W
web services, 457
WGS84, 453, 515

Index 703

	News
	02-05-2024
	08-18-2023
	01-13-2023
	06-28-2021
	05-19-2021

	About
	About
	What is PDAL?
	What is its big idea?
	Why would you want to do that?

	How is it different than other tools?
	LAStools
	PCL
	Entwine
	Untwine
	viewer.copc.io
	Potree
	Others

	Where did PDAL come from?
	How is point cloud data different than raster or vector geo data?

	What tasks are PDAL good at?
	What are PDAL’s weak points?
	High Level Overview
	Core C++ Software Library
	Command Line Utilities
	Python API
	Julia Plugin

	Conclusion

	Download
	Download
	Current Release(s)
	Past Releases
	Development Source
	Binaries
	Windows
	RPMs
	Alpine
	Conda

	Quickstart
	Quickstart
	Introduction
	Install Conda
	Run Conda
	Test Installation
	Install the PDAL Package

	Fetch Sample Data
	Print the first point
	What’s next?

	Applications
	Applications
	chamfer
	delta
	Example 1:
	Example 2:

	density
	eval
	ground
	hausdorff
	info
	Example 1:
	Example 2:

	merge
	pipeline
	Substitutions

	random
	sort
	split
	Example 1:

	tile
	Example 1:
	Example 2:

	tindex
	tindex Creation Mode
	tindex Merge Mode
	Example 1:
	Example 2:

	translate
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Community
	Community
	Mailing List
	GitHub
	Gitter
	Keybase
	IRC

	Drivers
	Pipeline
	Introduction
	Simple Example
	Reprojection Example
	Point Views and Multiple Outputs

	Processing Modes
	Pipelines
	Pipeline Array
	Stage Objects
	Filename Globbing
	Option Files

	Extended Examples
	BPF to LAS
	Python HAG
	DTM
	Decimate & Colorize
	Reproject
	Globbed Inputs

	Stages
	Readers
	readers.arrow
	Options

	readers.bpf
	Example
	Options

	readers.buffer
	Example
	Options

	readers.copc
	Example
	Options

	readers.draco
	Example
	Options

	readers.ept
	Example
	Options

	readers.e57
	Example 1
	Example 2
	Options

	readers.faux
	Example
	Options

	readers.fbi
	Example
	Options

	readers.gdal
	Basic Example
	LAS Example
	Options

	readers.hdf
	Example
	Common Use Cases
	Options

	readers.i3s
	Example
	Options

	readers.ilvis2
	Example
	Options

	readers.las
	Example
	Options

	readers.matlab
	Example
	Options

	readers.memoryview
	Usage
	Options

	readers.mbio
	Example
	Options

	readers.nitf
	Example
	Options

	readers.numpy
	Array Types
	Structured Arrays
	Standard (non-structured) Arrays
	X, Y and Z Mapping

	Loading Options
	Loading from a Python script
	Python Script
	Command Line Invocation
	Pipeline

	Options

	readers.obj
	Example
	Options

	readers.optech
	Example
	Options

	readers.pcd
	Example
	Options

	readers.pgpointcloud
	Example
	Options

	readers.ply
	Example
	Options

	readers.pts
	Example Pipeline
	Options

	readers.ptx
	Example Pipeline
	Options

	readers.qfit
	Example
	Options

	readers.rdb
	Installation
	Example
	Options
	Dimensions
	Metadata
	Object “database”
	List “dimensions”
	Object “metadata”
	List “transactions”

	readers.rxp
	Installation
	Example
	Options

	readers.sbet
	Example
	Options

	readers.smrmsg
	Example
	Options

	readers.slpk
	Example
	Options

	readers.stac
	Example
	Options
	Metadata
	Curl Timeouts

	readers.terrasolid
	Example
	Options

	readers.text
	Quoted dimension names
	Unquoted dimension names
	Example Input File
	Example #1
	Example #2
	Options

	readers.tiledb
	Example
	Options

	readers.tindex
	Basic Example
	Options

	Writers
	writers.arrow
	Example
	Options

	writers.bpf
	Example
	Options

	writers.copc
	VLRs
	Example
	Options

	writers.draco
	Example
	Options

	writers.ept_addon
	Example
	Options

	writers.e57
	Example
	Options

	writers.fbi
	Example
	Options

	writers.fbx
	Compilation
	Example
	Options

	writers.gdal
	Basic Example
	Options

	writers.gltf
	Example
	Options

	writers.las
	VLRs
	Example
	Options

	writers.matlab
	Example
	Options

	writers.nitf
	Example
	Options

	writers.null
	Example
	Options

	writers.ogr
	Example
	Options

	writers.pcd
	Example
	Options

	writers.pgpointcloud
	Example
	Options

	writers.ply
	Example
	Options

	writers.raster
	Basic Example
	Options

	writers.sbet
	Example
	Options

	writers.text
	Example
	Options

	writers.tiledb
	Example
	Options

	Filters
	Create
	Classification
	Ground/Unclassified
	filters.csf
	Example
	Options
	filters.pmf
	Example
	Notes
	Options
	filters.skewnessbalancing
	Example
	Options
	filters.smrf
	Example #1
	Example #2
	Options
	filters.sparsesurface
	Example #1
	Example #2
	Options
	filters.trajectory
	Examples
	Options

	Noise
	filters.elm
	Example #1
	Example #2
	Options
	filters.outlier
	Statistical Method
	Example
	Radius Method
	Example
	Options

	Consensus
	filters.neighborclassifier
	Example 1
	Example 2
	Options

	Height Above Ground
	filters.hag_delaunay
	Example #1
	Options

	filters.hag_dem
	Example #1
	Options

	filters.hag_nn
	Example #1
	Example #2
	Example #3
	Options

	Colorization
	filters.colorinterp
	Example
	Default Ramps
	awesome_green
	black_orange
	blue_orange
	blue_hue
	blue_orange
	blue_red
	heat_map
	pestel_shades
	Options

	filters.colorization
	Example
	Considerations
	Options

	Clustering
	filters.cluster
	Example
	Options

	filters.dbscan
	Example
	Options

	filters.litree
	Example
	Options

	filters.lloydkmeans
	Example
	Options

	Pointwise Features
	filters.approximatecoplanar
	Example
	Options

	filters.covariancefeatures
	Example #1
	Example #2
	Options
	Dimensionality feature set

	filters.eigenvalues
	Example
	Options

	filters.estimaterank
	Example
	Options

	filters.lof
	Example
	Options

	filters.miniball
	Example
	Options

	filters.nndistance
	Example
	Options

	filters.normal
	Example
	Options

	filters.optimalneighborhood
	Example
	Options

	filters.planefit
	Example
	Options

	filters.radialdensity
	Example
	Options

	filters.reciprocity
	Example
	Options

	filters.zsmooth
	Example
	Options

	filters.griddecimation
	Example
	Options

	Assignment
	filters.assign
	Options

	Assignment Expressions
	Example 1
	Example 2
	Example 3
	Example 4
	filters.overlay
	OGR SQL support
	Example 1
	Example 2
	Options

	Dimension Create/Copy
	filters.ferry
	Example 1
	Example 2
	Options

	Order
	filters.mortonorder
	Example
	Options

	filters.randomize
	Example
	Options

	filters.sort
	Example
	Options

	Move
	Registration
	filters.cpd
	When to use CPD vs ICP
	Examples
	Options

	filters.icp
	Examples
	Options

	filters.teaser
	Examples
	Options

	Predefined
	filters.projpipeline
	Example
	Options

	filters.reprojection
	Example 1
	Example 2
	Options

	filters.transformation
	Example
	Options
	Further details
	Translation
	Scaling
	Rotation

	filters.straighten
	Examples
	Options

	filters.georeference
	Examples
	Options

	filters.h3
	Options

	Cull
	Spatial
	filters.crop
	Example 1
	Example 2
	Options
	Notes

	filters.geomdistance
	Example 1
	Options

	Resampling
	filters.decimation
	Example
	Options

	filters.fps
	Options

	filters.relaxationdartthrowing
	Options

	filters.sample
	Options

	Conditional
	filters.dem
	Example
	Options

	filters.iqr
	Example
	Options

	filters.mad
	Example
	Options

	Voxel
	filters.voxelcenternearestneighbor
	Example
	Options

	filters.voxelcentroidnearestneighbor
	Example
	Options

	filters.voxeldownsize
	Example
	Options

	Position
	filters.expression
	Example
	Options

	filters.head
	Example #1
	Example #2
	Options

	filters.locate
	Example
	Options

	filters.mongo
	Example
	Options
	Expression
	Comparison operators
	Logical operators

	filters.range
	Example
	Options
	Ranges
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	filters.tail
	Example
	Options

	New
	Spatial
	filters.chipper
	Example
	Options

	filters.divider
	Example
	Options

	filters.splitter
	Example
	Options

	Dimension
	filters.gpstimeconvert
	Example #1
	Example #2
	Example #3
	Options

	filters.groupby
	Example
	Options

	filters.returns
	Example
	Options

	filters.separatescanline
	Example
	Options

	Join
	filters.merge
	Example 1
	Example 2
	Options

	Metadata
	filters.hexbin
	Example 1
	Example 2
	Options

	filters.info
	Options

	filters.stats
	Example
	Options

	Mesh
	filters.delaunay
	Example
	Options

	filters.greedyprojection
	Example
	Options

	filters.poisson
	Example
	Options

	filters.faceraster
	Basic Example
	Options

	Languages
	filters.matlab
	Example
	Options

	filters.python
	Modification Example
	Predicates
	Example pipeline

	Module Globals
	Setting stage metadata
	Passing Python objects
	Standard output and error

	Options

	filters.julia
	Filter Example
	Modification Example
	Options

	Other
	filters.streamcallback
	Options

	Dimensions
	Dimensions

	Types
	Types

	Python
	Python
	Versions
	Embed
	Extend
	Installation
	Installation Using pip
	Installation from Source
	Install using Conda

	Java
	Java
	Versions
	Using PDAL Java bindings
	Using PDAL Scala
	Installation
	Compilation

	Tutorials
	Tutorials
	Reading with PDAL
	A basic inquiry example
	A conversion example
	Metadata

	A Pipeline Example
	Simple conversion
	Loop a directory and filter it through a pipeline

	Reading data from EPT
	Introduction
	Install Conda
	Install PDAL
	Write the Pipeline
	Pipeline
	Stages
	readers.ept
	filters.range
	filters.assign
	filters.reprojection
	filters.smrf
	filters.range
	writers.gdal
	writers.las

	Execute the Pipeline

	LAS Reading and Writing with PDAL
	Introduction
	LAS Versions
	Version Example

	Spatial Reference System
	Assignment Example
	Vertical Datum Example
	Reprojection Example

	Point Formats
	Point Format Example

	Extra Dimensions
	Extra Dimension Example

	Required Header Fields
	Header Fields Example

	Coordinate Scaling
	Auto Offset Example

	Compression
	Compression Example
	Variable Length Records
	VLR Example

	PDAL Metadata
	Metadata Example

	Clipping with Geometries
	Introduction
	Example Data
	Stage Operations
	Data Preparation
	Pipeline
	Processing
	Conclusion

	Ground Filter Tutorial
	Background
	The Pipeline
	The Explanation
	Reprojecting Data
	Assigning Classification Values
	Extended Local Minimum
	Outliers
	Ground Segmentation
	Extracting Ground Returns

	Running the Pipeline

	Applying a grid shift to point clouds
	Introduction
	Background
	Before we begin
	Install Conda
	Create a Conda Environment

	Step 1: Create a Datum Transformation Grid (GTX)
	Option 1 — LINZ supplied GTX file
	Option two — Create a GTX file

	Step 2: Prepare a JSON Pipeline file
	Step 3: Use PDAL to reproject
	Reprojecting one file from LVD to NZVD2016
	Reprojecting multiple files from LVD to NZVD2016
	Reprojecting from NZGD2000 to NZVD2016
	NZVD2016 to NZGD2000 or LVD

	Workshop
	Point Cloud Processing and Analysis with PDAL
	Introduction
	Materials
	USB Drive

	Introduction to LiDAR
	Types of LiDAR
	Modes of LiDAR Collection
	Georeferencing
	Integrating LiDAR and GNSS/IMU data

	Discrete-Return vs. Full-Waveform

	Software Installation
	Conda
	What is Conda
	How will we use Conda?
	Installing Conda Environment (Workshop USB)
	Installing Conda
	Using Conda From ArcGIS Pro

	QGIS
	What is QGIS (http://qgis.org)?
	How will we use QGIS?
	Installing QGIS
	Conclusion

	Getting Started
	Printing the first point
	Exercise
	Notes

	Printing file metadata
	Exercise
	Structured Metadata Output

	Notes

	Searching near a point
	Exercise
	Notes

	Compression
	Exercise
	Notes

	Reprojection
	Exercise
	Notes

	Entwine
	Exercise
	Notes

	Manipulation
	Finding the boundary
	Exercise
	Notes

	Clipping data with polygons
	Exercise
	Data preparation
	Overlaying Attributes
	Pipeline breakdown
	1. Reader
	2. filters.overlay
	3. filters.expression
	4. Writer
	Execution
	Visualization

	Notes

	Colorizing points with imagery
	Exercise
	Pipeline breakdown
	1. Reader
	2. filters.colorization
	3. filters.expression
	4. writers.las
	5. writers.copc
	Execution
	Visualization

	Notes

	Removing noise
	Exercise
	Pipeline breakdown
	1. Reader
	2. filters.outlier
	3. filters.expression
	4. writers.las
	5. writers.copc
	Execution
	Visualization

	Notes

	Visualizing acquisition density
	Exercise
	Command
	Visualization

	Notes

	Thinning
	Exercise
	Command
	Visualization

	Notes

	Identifying ground
	Exercise
	Command
	Filtering

	Generation
	Generating a DTM
	Exercise
	Command
	Pipeline breakdown
	1. Reader
	2. writers.gdal
	Execution
	Visualization

	Notes

	Creating surface meshes
	Exercise
	Mesh Command
	Filtering
	Command

	Rasterizing Attributes
	Exercise
	Command
	Pipeline breakdown
	1. Reader
	2. writers.gdal
	Execution
	Visualization
	Intensity

	Notes

	Plotting a histogram
	Exercise
	PDAL Pipeline
	Python script
	Run pdal pipeline
	Output

	Notes

	Georeferencing
	Exercise
	Command
	Visualization

	Batch Processing
	Operating system variations
	Windows native tools

	Example - Batch compression of LAS files to LAZ - PowerShell:
	Example - Parallel Batch compression of LAS files to LAZ - PowerShell:
	Unix/Linux native tools

	Example - Batch compression of LAS files to LAZ - Bash:
	Example - Parallel Batch compression of LAS files to LAZ - Bash:
	Exercise - Pipeline Substitions:

	Final Project
	Notes
	Notes
	Notes
	Notes
	Notes
	Notes
	Notes

	Development
	Development
	PDAL Architecture Overview
	The PDAL model
	Extending PDAL
	Dimension
	Point Layout
	Point Table
	Point View
	Point Reference

	Making a Stage (Reader, Filter or Writer):
	Stage Preparation
	Stage Execution
	Streaming Stage Execution

	Implementing a Reader
	Implementing a Filter
	Implementing a Writer:

	Compilation
	Unix Compilation
	Dependencies
	Using Ninja on Linux or OSX
	Get the source code
	Prepare a build directory
	Run CMake
	Issue the ninja command
	Checking the build and running PDAL tests
	Install PDAL

	Building Under Windows
	Introduction
	Required Compiler
	Prerequisite Libraries
	Fetching the Source
	Configuration
	Building
	Running

	Dependencies
	Required Dependencies
	GDAL (3.0+)
	GeoTIFF (1.3+)

	Plugin Dependencies
	Nitro (Requires specific source package)
	TileDB (1.4.1+)

	Errors and Error Handling
	Exceptions
	PDAL Position on (Non)conformance

	Metadata
	Metadata Nodes
	Metadata and Stages

	Writing with PDAL
	Includes
	Compiling and running the program
	Streaming

	Writing and building a PDAL Plugin
	Writing a filter
	The header
	The source
	Compilation
	Stand-alone program

	Writing a kernel
	The header
	The source
	Compilation

	Writing a reader
	The header
	The source
	Compiling and Usage
	Streaming Reader
	Fine-grained Streaming Control

	Writing a writer
	The header
	The source
	Compiling and Usage

	CMake
	Basic CMake configuration
	CMakeLists explained
	Compiling the project

	Project
	Coding Conventions
	Source Formatting
	Naming Conventions
	Other Conventions
	#include Conventions

	Contributors
	Engineering Contributors
	Funding Contributors

	Docs
	Requirements
	Sphinx (http://sphinx-doc.org/) and Breathe (https://github.com/michaeljones/breathe)
	Doxygen
	Latex
	dvipng

	Generation
	Website

	Building Docker Containers for PDAL
	Dependencies
	Maintenance
	Latest (or master)

	Alpine
	Packages
	Travis
	Docker

	Testing
	Unit Tests
	Running the Tests
	Test Data

	Continuous Integration
	Status
	Configuration
	Dependencies
	Docs
	Push to pdal.io

	API
	C++ API
	pdal::BOX2D
	pdal::Charbuf
	pdal::ColumnPointTable
	pdal::Dimension
	pdal::Extractor
	pdal::FileUtils
	pdal::Filter
	pdal::IStream
	pdal::Log
	pdal::Metadata
	pdal::Options
	pdal::PointTable
	pdal::PointView
	pdal::ProgramArgs
	pdal::Reader
	pdal::RowPointTable
	pdal::Stage
	pdal::StageFactory
	pdal::Utils
	pdal::Writer

	libLAS C API to PDAL transition guide
	Includes
	Initial steps
	Dataset properties
	Iterating over points
	Point validity
	Coordinates
	Returns
	Classes
	Color
	Time
	Other point attributes
	Memory management

	FAQ
	License
	Overall PDAL license (BSD)

	References
	Citation
	Reference

	Indices and tables
	Bibliography
	Index

